


ABSTRACT

Thermodynamic Modeling and Molecular Simulation of Amphiphilic Systems

by

Le Wang

Interfacial phenomena are of vital importance to industrial and commercial appli-

cations from enhanced oil recovery to personal care products. To optimize interfacial

processes, amphiphiles are usually involved, and, unlike simple molecules, amphiphiles

possess both hydrophilic(water-loving) and hydrophobic(oil-loving) properties. Com-

pared to the knowledge gained regarding the properties of simple fluids in the bulk

region, our knowledge of modeling and prediction of the phase behavior and inter-

facial properties of amphiphiles is relatively less abundant. The goal of this thesis

is to enhance our understanding of the phase behavior and interfacial phenomena of

the systems containing amphiphiles using molecular simulation and statistical me-

chanics based theories. In particular, we have studied fundamental aspects related

to enhanced oil recovery, i.e. interfacial tension, micelle formation, middle-phase

microemulsion, foam stability and wettability alteration of reservoir rock surfaces.

In this thesis, the interfacial Statistical Associating Fluid Theory that relies on

fundamental measure theory, mean field treatment of van der Waals interaction, and

Wertheim’s thermodynamic perturbation theory for association and chain connectiv-

ity along with molecular dynamics simulation have been used to study the molecular

structure and interfacial properties of surfactant containing systems. Key contribu-

tions of this thesis include:



1. An approach inside iSAFT framework based on the Method of Moments that

predicts the formation of middle-phase microemulsions of surfactant/oil/water

systems has been presented.

2. The iSAFT approach has been extended to model surfactant micelle formation.

Complete interfacial tension isotherm can be predicted. The e↵ects of surfactant

architecture have been studied.

3. The role of lauryl betaine as a foam booster was investigated. Insight was gained

on the interaction between lauryl betaine and alpha olefin sulfonate.

4. The adsorption of deprotonated naphthenic acid on Calcite surface was studied,

which is important in understanding the wettability alteration of carbonate

reservoirs.
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Chapter 1

Introduction

1.1 Motivation

Surfactants have been widely used in industry and our daily life. In the oil industry,

surfactants find great applications in enhanced oil recovery processes (EOR). EOR,

also called tertiary recovery, refers to the techniques that increase the production

of crude oil from oil reservoirs after waterflooding. Due to surfactants’ amphiphilic

nature, they can be used to alter the interfacial tension of the oil-water interface and

alter the wettability of rock surfaces such that the oil trapped in the porous media

can be more easily released. Additionally, with the help of certain surfactants (alpha

olefin sulfonate, internal olefin sulfonate, etc), strong foam can be generated that

provides mobility control of the injected fluid to increase the sweep e�ciency and oil

production.

In surfactant EOR processes, ultra-low interfacial tension is favored. When ultra-

low interfacial tension is achieved, a homogeneous and transparent mixture of oil,

water, and surfactant can be observed, and this mixture is referred to as a middle-

phase microemulsion. So, experimentally, surfactant formulation is screened based

on the appearance of the middle-phase microemulsion for ultra-low interfacial ten-

sion. However, this process can be time-consuming and expensive. Additionally, the

mechanisms behind a number of phenomena related to oil recovery, such as lauryl

betaine enhancing foam stability, wettability alteration of carbonate reservoirs, etc,
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are still not well understood. Hence it is desirable to utilize molecular modeling tools

to understand the properties of surfactants and their roles in interfacial phenomena.

1.2 Surfactant

Surface active agents or surfactants exhibit complex and interesting phase behavior

at fluid/fluid(vapor) or fluid/solid interfaces and in bulk solution due to their am-

phiphilic nature. Each surfactant molecule generally has one or more hydrophilic

moieties or heads and one or multiple hydrophobic moieties or tails. The surfactant

tail is usually an alkyl chain that dislikes water and acts as the driving force for the

aggregation of surfactants in aqueous solution through an entropically driven process.

The surfactant head is hydrophilic and can form hydrogen bonds with water molecules

(nonionic surfactants) or interact with water molecules through electrostatic interac-

tions (ionic surfactants) that enhances the solubility of surfactants in water. De-

pending on the type of charge their head groups carry, surfactants are classified into

four categories[11]: nonionic surfactants(e.g. polyethelene glycol alkly ether), an-

ionic surfactants(e.g. alpha olefin sulfonate, carboxylic acid), cationic surfactants(e.g.

quaternary ammonium organics) and zwitterionic surfactant(e.g. betaines, sultanes).

The head charge of certain surfactants, such as alkyl amidine compounds[12], can be

modified by the environment they are exposed to. They are referred to as switch-

able surfactants. The surfactant’s electrostatic characteristics are very important and

have to be considered in di↵erent applications. For example, in enhanced oil recovery

process concerning carbonate reservoirs, special attention has to be made when ap-

plying anionic surfactants since the favorable interaction between positively charged

carbonate rock surface and negatively charged anionic surfactant would result in the

adsorption and a huge loss of surfactant[13], making the process less e↵ective and
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economical.

The unique chemical nature of surfactants leads to interesting and attractive phase

behavior in either aqueous or oleic environment. They can participate at the inter-

face between hydrophobic and hydrophilic media to reduce the interfacial tension

and, as the concentration rises, they can self-assemble into micelles(usually spheri-

cal at low surfactant concentration)[14]. The onset concentration at which micelles

start to form is the critical micelle concentration(CMC). After this concentration is

reached, the surface concentration of surfactant molecules at the interface is approx-

imately constant, hence, interfacial tension stays constant. As concentration further

increases, spherical micelles may aggregate and elongate to form cylindrical/worm-like

micelles(responsible for the change of viscosity)[15], hexagonal structure[16], bicon-

tinuous structure[17] and liquid crystalline structure. They can also precipitate out of

the solution at certain conditions making the solution cloudy to one’s eye. The phase

behavior of surfactant solution can a↵ect its macroscopic properties. For example, the

entanglement of worm-like micelles could increase the viscosity of the solution[18]. For

ionic surfactants, the formation of micelles can change the conductivity of the solution,

which can be used as a criterion to determine the CMC(conductivity method[19]).

The formation of a bicontinuous structure will greatly enhance the mutual solubility

between dislike oil and water and this bicontinuous phase is called a middle-phase mi-

croemulsion. It is an indication of the ultra-low interfacial tension between oil phase

and water phase. Thus it finds great application in enhanced oil recovery processes.

Due to these e↵ects, surfactant can be utilized as detergents, emulsifiers, solution

viscosity modifier, interfacial tension modifier, structural templates for nanoparticle

synthesis, carriers for drug delivery processes, etc.
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Figure 1.1 : Schematic of Winsor Type Microemulsions

1.3 Microemulsion

Microemulsion is defined as a ternary mixture of oil, water, and surfactants, which

is homogeneous and thermodynamically stable[20]. According to Winsor[21] who

proposed the Winsor R-ratio to predict the favorable type of microemulsions, there

are four types of microemulsions, i.e. an oil-in-water microemulsion in coexistence

with excess oil phase, a water-in-oil microemulsion in coexistence with excess water

phase, a middle-phase microemulsion in coexistence with excess oil and water, and a

single-phase microemulsion formed by adding su�cient amount of surfactant resulting

in maximum solubilization of excess oil and water. The schematic is shown in Figure

1.1.

The Winsor R-ratio theory, as mentioned before, can be used to qualitatively

understand the type of microemulsions formed under specific external conditions, i.e.
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temperature, pressure, salinity, surfactant architecture, and solvent structure. The

type of microemulsions is determined based on the bending of a pre-defined interfacial

layer of surfactants at a planar oil/water interface. The tendency of the interface to

bend toward water phase is compared against the tendency of the interface to bend

toward the oil phase. This tendency is influenced by the interaction energy or cohesive

energy between surfactant layer and oil or water phase. The Winsor R-ratio can be

written as

R =
ATO + AHO � AOO � ATT

ATW + AHW � AWW � AHH
(1.1)

where A refers to cohesive energy, and the index T , O, H, W represents surfac-

tant tail, oil, surfactant head, and water, respectively. AXY denotes the cohesive

energy between X and Y . If R < 1, the interaction between surfactant and water is

more favored than the interaction between surfactant and oil. Hence, the surfactant

layer will be convex to water. Water becomes the continuous phase and an oil-in-

water microemulsion is favored. Similarly, if R > 1, a water-in-oil microemulsion

is favored. When the cohesive energy between the planar surfactant layer and wa-

ter molecules is equivalent to the cohesive energy between the surfactant layer and

oil molecules(R = 1), a middle-phase microemulsion is favorable. Although lots of

insight can be gained from Winsor R-theory, the theory is relatively hard to imple-

ment since the cohesive energy between surfactant monolayer and bulk phase is not

straightforward to calculate considering the fact that an interfacial layer must be

defined beforehand.

In 2003, Fraaije et al.[22] proposed a more quantitative method referred to as

the Method of Moments. A direct mapping between the Method of Moments and

Winsor R ratio is available. This will be discussed in more details in Chapter 3.

Other empirical correlations such as packing parameter[23] and hydrophilic-lipophilic
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balance(HLB)[24] can also help explain the formation of microemulsions. However,

the predictive power of empirical correlations is usually poor and will not be the focus

of this thesis.

1.4 Surface/Interfaical Tension

Associated with surfactants and microemulsions, surface tension or interfacial tension

is of special interest. It can be defined as the surface excess free energy or the work

needed to create a surface with unit area and plays great roles in mass transfer,

nucleation, wetting[25], and enhanced oil recovery process[26]. Based on convention,

the definition of surface tension and interfacial tension is a little di↵erent. Surface

tension usually refers to the surface excess energy between one phase and a vapor

phase, while interfacial tension is the surface excess energy between other phases.

But hereafter, those two terms will be used interchangeably.

Various approaches can be taken to investigate the magnitude of interfacial ten-

sion. Experimentally, interfacial tension can be measured by capillary rise method[27],

pendent drop method[28], Wilhelmy plate method[29], etc. Theoretically, depend-

ing on the ensemble of interest, interfacial tension can be written as the change of

corresponding free energy over the change of interfacial area. In (NpT ) ensemble,

interfacial tension � is � = (dGdA)T,p,N that can be derived from the change of Gibbs

energy of the system written as

dG = (
dG

dT
)p,N,AdT + (

dG

dp
)T,N,Adp+

X

i

(
dG

dNi
)T,p,N

j 6=i

,AdNi + �dA (1.2)

where G is Gibbs free energy, T is the temperature, Ni denotes the amount of species

i, p is the pressure, and A is the interfacial area. In this classical thermodynamics

treatment, not many insights into the interfacial region besides the magnitude of
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interfacial tension can be obtained.

van der Waals realized that the densities of molecules change continuously be-

tween two bulk phases[30] and an expression of local free energy density composed

of both homogeneous free energy introduced by a bulk Equation of State and local

density approximation and inhomogeneous free energy(a density gradient term)[31]

was introduced to describe this distribution. Later, the theory was organized and

completed by Cahn et al.[32] and the density gradient theory (DGT) was proposed.

DGT, based on the bulk Equation of States, has been widely used to calculate the

value of interfacial tension[33, 34, 35] and showed good accuracy. Furthermore, the

density distribution of molecules across the interfacial region can be obtained and

interesting observations such as the aggregation of toluene at oil/water interface can

be made. Aside from DGT that relies on bulk EoS and local density approximation,

classical density functional theory (DFT) is known to be most versatile and success-

ful approach to describe interfacial properties[30]. In DFT, the free energy density

is described by the inhomogeneous free energy functionals designed specifically for

the inhomogeneous region. The interfacial tensions calculated have been shown to be

in good agreement with experimental data[36, 37]. Furthermore, the distribution of

molecules such as amphiphilic molecules at liquid/liquid interfaces can be described

which is currently not available from the DGT approach.

With the development of computational power, computer simulation techniques

such as Monte Carlo simulation(MC), molecular dynamics simulation(MD), and dis-

sipative particle dynamics(DPD) were developed and keep gaining attention from

researchers for investigating the interfacial properties[38, 39, 40, 41]. To calculate

interfacial tension between two liquids, two slabs of bulk liquid phases are placed

in the simulation cell. By either solving Newton’s Equation of Motion (in MD and
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DPD) or statistical sampling (in MC), the equilibrium distribution of molecules can

be generated. Then the surface tension can be calculated with the pressure tensor

method[30] or test area method[42]. Thanks to the development of computer algo-

rithms and software packages[43, 44, 45, 46, 47], and rigorous force fields[48, 49], the

interfacial properties of more realistic systems[50, 51] can be investigated with great

accuracy. However, at the current time, molecular simulations are still considerably

slower than theoretical approaches such as DFT and DGT when calculating interfacial

tension and the distribution of trace components cannot be dealt with very e�ciently

by simulation approaches due to the large number of molecules needed to simulate

such systems. Additionally, the free energy of the system is not readily available

making the calculation of some quantities such as chemical potentials less convenient

compared with DFT and DGT.

1.5 Enhanced Oil Recovery

Oil recovery processes involve three stages: primary recovery, secondary recovery,

and tertiary recovery(enhanced oil recovery)[52]. In the primary recovery stage, oil is

produced by the high pressure inside the reservoir. As the production and depletion of

oil proceed, the reservoir pressure declines causing the loss of driving force. A pump

can be used to produce oil at low rates. To increase production rate, an external

fluid such as gas or water can be injected into the reservoir to increase pressure.

The injected fluid can also help displace the crude oil. The use of external fluids

to maintain reservoir pressure is called secondary recovery which reaches its limit

when a large amount of injected fluid is produced from the production well. Only

about a third of original oil in place(OOIP) can be produced by primary recovery

and secondary recovery[53], due to high interfacial tension between oil and water,
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unfavorable wettability of rock surface and poor mobility control. To overcome these

issues, chemicals and heat can be introduced. This stage is called tertiary recovery

or enhanced oil recovery(EOR)[52].

Major EOR techniques may involve chemical EOR, miscible flooding, and thermal

methods. In chemical EOR, chemicals such as surfactant, alkali and polymers are

usually involved[54, 55, 56]. Surfactant can reduce the interfacial tension between

reservoir fluids and alter the wettability of rock surfaces, that helps release the oil

droplets originally trapped inside the rock pores. The EOR approach using surfactant

is called surfactant flooding. Although it has been shown to be an e↵ective approach,

the expense of surfactant is usually very high making it less economical. Alkali

can react with the organics in the crude oil and produce soap that is a natural

surfactant. So by injecting alkali, surfactant can be produced in-situ and IFT can be

reduced[57]. Furthermore, it has been shown that the addition of relatively economic

alkali can reduce the adsorption of more expensive surfactant[58]. The e�ciency of

this approach depends on the acid number of the crude oil. Rather than decreasing

interfacial tension, polymers with high viscosity can help provide mobility control

of the injected fluid and increase the sweep e�ciency. However, polymers cannot

prevent oil trapping by capillary forces. Similar to surfactant, polymers are expensive

and high salinity and temperature in the reservoirs may cause serious chemical and

thermal degradation resulting in the loss of performance[59]. Alternatively, foam can

be used. Foam has been shown to be a promising alternative to polymers for mobility

control[60]. These three techniques can be used simultaneously and the resulting

approach is called the alkaline-surfactant-polymer(ASP) flooding[61].

In addition to chemical EOR, miscible flooding can be applied. Solvents and gases

such as supercritical CO
2

that are miscible with the crude oil can be injected which
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has been shown to enhance the microscopic displacement e�ciency[62]. However,

due to the di↵erence in density and viscosity, the miscible fluids can preferentially

flow over(gravity override) or finger through the oil phase resulting in poor sweep

e�ciency. To resolve this issue, as mentioned, foam or polymers can be introduced

for mobility control purpose.

1.6 Challenges

Challenges are remaining in EOR processes related to the interfacial phenomena and

the use of amphiphilic molecules. In this thesis, we mainly focus on several.

One of the challenges is to e�ciently screen surfactant formulation for better

performance in surfactant flooding process. In surfactant flooding, surfactant formu-

lation that generates ultra-low interfacial tension is required. Ultra-low interfacial

tension usually appears with the formation of a middle-phase microemulsion. To

reach optimal surfactant formulation, a great amount of e↵ort is needed for conduct-

ing surfactant formulation scan experiments seeking the middle-phase microemulsion.

These experiments can be time-consuming and costly. To make the process more ef-

ficient, theories can be developed and applied to predict the properties of surfactant

systems and save experimental e↵orts. However, predictive approaches are still rare

to find in the literature and left to be developed.

Another challenge is to understand the foam boosting e↵ect of lauryl betaine in

Foam EOR processes and the interaction between zwitterionic lauryl betaine and an-

ionic surfactants. Foam has been regarded as a promising alternative to conventional

high molecular weight polymers for mobility control purposes in EOR processes. For

foam to be e↵ective in mobility control, it has to be relatively strong and stable. Al-

though it has been shown experimentally that lauryl betaine can greatly increase the
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stability of foam generated by a mixture of gas, water and anionic surfactants, the

mechanism behind it is not well understood. E↵orts need to be made to understand

the mechanism which will allow rational design of e�cient and economic foaming

agents.

The third challenge of interest is to develop new techniques for the wettability

alteration of carbonate reservoirs. Although originally water-wet, carbonates can be

preferentially oil-wet under reservoir conditions in contact with reservoir fluids. The

oil-wet state of carbonates is not preferred in oil recovery process since it can prevent

water from spontaneous imbibition and trap oil inside the rock pores due to capillarity.

If the carbonate surfaces can be modified to water-wet, the injecting fluid(water) can

invade into small pores in the rock matrix and displace oil more e↵ectively, resulting

in increased oil recovery e�ciency. New technologies are needed for this purpose, and

a molecular level understanding of the interactions between reservoir rock surfaces

and organic acids can be helpful.

1.7 Scope of the thesis

This thesis is confined to study the interfacial phenomena related to surfactants and

amphiphilic molecules aiming to provide insight and help overcome the challenges

mentioned previously.

Chapter 2 gives an introduction to the interfacial statistical association fluid the-

ory(iSAFT) density functional theory(DFT) approach. The formulations used to con-

duct iSAFT calculations in Chapter 3 and Chapter 4 are summarized. The extension

of iSAFT describing electrostatic interactions is also covered.

In Chapter 3, an iSAFT approach based on force acting through the interface and

the Method of Moments was developed to predict the e↵ect of surfactant architecture
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on the type of microemulsions formed. The stress that describes the local force in the

interface obtained from iSAFT was verified against molecular dynamics simulation

approach, and the dependence of the types of microemulsions on surfactant archi-

tecture agrees qualitatively with experimental observation. Additionally, the e↵ect

of surfactant structure on the phase inversion temperature can be captured. With

properly determined surfactant parameters, this new approach will enable e�cient

screening of surfactant formulations for optimal surfactant flooding.

Chapter 4 discusses an extension of iSAFT to model the formation of spheri-

cal surfactant aggregates(micelles) in water and oil/water mixture. Compared with

molecular simulation approach, DFT approach models the true thermodynamic equi-

librium state between micelles and surfactant monomers and provides a unified the-

oretical framework for predicting the properties of surfactants in the bulk region and

interfacial region. This new application of iSAFT DFT enables us to predict complete

interfacial tension isotherms. Additionally, this approach can be used to study swollen

micelles and inverse swollen micelles that may enable us to gain better understanding

of the formation of a middle-phase microemulsion.

Chapter 5 provides insight into the mechanism of lauryl betaine as foam booster.

Using molecular dynamics simulations, a system of LB (the foam booster) and alpha

olefin sulfonate (AOS-14), an anionic surfactant that is used as a foam stabilizer, was

studied. It was found that the foam booster functions by screening the interaction

between the anionic surfactant. Favorable interaction between foam booster and

anionic surfactants leads to a closer packing of the monolayer than possible with

just the pure anionic surfactant. It was also found that the closer packing is also

reflected in an elevated surface dilatational modulus, indicating that the closer packed

monolayer will stabilize the foam. This work o↵ers insights that can be potentially
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useful in the rational design of surfactant blends for use in enhanced oil recovery.

In Chapter 6, the adsorption of naphthenic acids on calcite surface was studied by

molecular dynamics simulation and the free energy of adsorption is calculated by um-

brella sampling technique. It was found that, aside from electrostatic interaction, the

hydrophobic attraction between acid molecules and calcite surface is also important

in the adsorption process. The adsorption free energy can be enhanced by increasing

the tail size of naphthenic acids. Further, the adsorption at room temperature was

shown to be entropically driven and increases with the increase of temperature, which

is consistent with experimental observation.

Chapter 7 summarizes the thesis and suggests future research directions.
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Chapter 2

Theoretical Background

In the following, details of the potential models and iSAFT DFT are described.

2.1 Potential Models

The Statistical Associating Fluid Theory (SAFT)[63] has shown great success in mod-

eling phase behavior of polyatomic associating fluids. In this approach, molecules are

modeled as chains of segments. All the segments are spherical with hard sphere diam-

eter � that also interact through a Lennard-Jones potential and directional hydrogen

bonding sites. As the generalization of the SAFT, interfacial Statistical Associat-

ing Fluid Theory (iSAFT) allows the prediction of interfacial properties[64, 65] and

meso-scale structure of complex fluids. In the bulk, iSAFT reduces to the SAFT

form.

The segment-segment hard sphere repulsion and long-range attraction are modeled

with the pair potential

u↵�(r) =

8
>>>>>>><

>>>>>>>:

1 r < �↵�,

uLJ
↵� (rmin

)� uLJ
↵� (rc) �↵�  r < r

min

,

uLJ
↵� (r)� uLJ

↵� (rc) r
min

 r < rc,

0 r � rc

(2.1)

where uLJ
↵� represents the Lennard-Jones potential, r is the distance between segment

↵ and �, �↵� is the cross species hard sphere diameter determined by specific mixing
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rules, rmin represents the Lennard-Jones potential minimum, and rc denotes the cuto↵

radius which is set to 4�↵�.

The Lennard-Jones potential uLJ
↵� is defined as

uLJ
↵� (r) = 4"↵�

⇣�↵�
r

⌘
12

�
⇣�↵�

r

⌘
6

�
(2.2)

where "↵� is the depth of attraction well between segment ↵ and � that is determined

by specific mixing rules. In this work, cross interaction parameters for Lennard-Jones

interactions of two unlike segments ↵ and � are given by

"↵� =
p
"↵"�(1� k↵�) �↵� =

�↵ + ��
2

(2.3)

where "↵ and "� are Lennard-Jones interaction energies of segments ↵ and � respec-

tively; while �↵ and �� are diameters of segments ↵ and � respectively. k↵� is the

binary interaction parameter for the two segments.

Molecules such as water and surfactants may form hydrogen bonds. The asso-

ciation between molecules is described by a directional attractive potential between

association sites as shown in Figure 2.1. An orientationally dependent square well

potential is used to model the hydrogen bonding interaction energy given by

uassoc
AB (r,⌦↵,⌦�) =

8
><

>:

�"assoc r < rc,assoc; ✓A < ✓c; ✓B < ✓c,

0 otherwise
(2.4)

where "assoc denotes the association energy between association site A on segment ↵

and association site B on segment �. rc,assoc is the cuto↵ distance within which asso-

ciation can occur. ⌦↵ and ⌦� are the orientations of segments ↵ and � respectively.

✓ is the angle between the vector pointing from the center of a segment to the center

of the association site on that segment and the vector pointing from the center of

one segment(↵ or � ) to the center of the other segment( � or ↵ ). Association can
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Figure 2.1 : Potential Model for Association

only occur when these two angles are smaller than the cuto↵ value ✓c (Figure 2.1).

The cuto↵ distance and the angular cuto↵s are chosen to allow only one bond per

association site.

In this work, potential parameters for water and oil are fit to saturated liquid

densities and vapor pressures. The surfactant is constructed in the same spirit as the

Telo de Gama and Gubbins model[66] where the surfactants include segments with

water-like parameters and segments with alkane-like parameters. Here, we explicitly

include hydrogen bonding which was not present in Telo de Gama and Gubbins

model. The schematics of model water, octane and surfactant molecules are shown

in Figure 2.2. For example, water is modeled as a sphere with four association sites:

two electron donor and two electron acceptor sites. Fitting of the model parameters

is described in the Parameter Estimation Section.

2.2 interfacial Statistical Associating Fluid Theory

Based on the potential models, the iSAFT free energy functional of the system A

can be constructed. In the framework of thermodynamic perturbation theory, A is

given by the summation of various contributions, i.e. ideal gas contribution Aid ,

hard sphere contribution Ahs , long range attraction contribution Aatt , association

contribution Aassoc , and contribution due to the covalent bond between segments to
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Figure 2.2 : Schematics of water, octane and amphiphilic chain constructure within
the Telo da Gama and Gubbins model.

form chain-like molecules Achain. In the following, we review expressions of Helmholtz

free energy due to these di↵erent contributions. More details can be found in the

original publications by Jain et al.[67] and Bymaster et al.[68] .

The ideal gas contribution for a mixture of spheres is exactly known from statistical

mechanics[69],

Aid [{⇢↵}] = kBT

Z
d�!r

NX

↵=1

⇢↵(
�!r )(ln(⇢↵(�!r ))� 1) (2.5)

where ⇢↵ is the density of segment ↵ , N is the number of di↵erent types of segments

in the system so the summation is conducted over all segments, kB is the Boltzmann

constant, and T is the absolute temperature. The de Broglie wavelength is neglected

since it does not a↵ect fluid structure.

The hard sphere contribution to the Helmholtz free energy is considered by em-
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ploying Rosenfeld’s fundamental measure theory (FMT)[70],

Ahs [{⇢↵}] = kBT

Z
d�!r � [{n↵(

�!r )}] (2.6)

where � [{n↵}] is given by

� [{n↵(
�!r )}] = �n

0

ln(1� n
3

) + n1n2
1�n3

+ n3
2

24⇡(1�n3)
2

�
�!n

V 1·�!n V 2
1�n3

� n2(
�!n

V 1·�!n V 2)

8⇡(1�n3)
2

(2.7)

ni(i = 0, 1, 2, 3, V 1, V 2) are FMT weighted densities given by

ni(
�!r ) =

NX

↵=1

ni,↵(
�!r ) =

NX

↵=1

Z
⇢seg↵ (�!r

1

)!(i)
↵ (�!r ��!r

1

)d�!r
1

, i = 0, 1, 2, 3, V 1, V 2

(2.8)

where !(2)

↵ (r) = �(R↵ � r), !(3)

↵ (r) = ⇥(R↵ � r), �!! (V 2)

↵ (�!r ) = �!r
r �(R↵ � r), !(0)

↵ (r) =

!
(2)
↵

(r)
4⇡R2

↵

, !(1)

↵ (r) = !
(2)
↵

(r)
4⇡R

↵

, and �!! (V 1)

↵ (�!r ) = !
(V 2)
↵

(

�!r )

4⇡R
↵

. �(R↵ � r) is the Dirac delta

function and ⇥(R↵ � r) is the Heaviside step function, where R↵ is the radius of

segment ↵.

The Helmholtz free energy resulting from long-range attraction is considered by

neglecting the detailed correlation between segments (mean-field approximation)[71],

Aatt [{⇢↵}] =
1

2
kBT

NX

↵=1

NX

�=1

Z

|�!r2��!r1|>�
↵�

d�!r
1

d�!r
2

u↵�(|�!r2 ��!r
1

|)⇢↵(�!r1 )⇢�(�!r2 ) (2.9)

where u↵� is given in Eq.(2.1).

The Helmholtz free energy due to association was derived fromWertheim’s theory[72,

73, 74, 75]. It can be written as[68, 76, 77],

Aassoc[{⇢↵}] = kBT

Z
d�!r

1

NX

↵=1

⇢↵(
�!r
1

)
X

A2�(↵)

(lnX↵
A(
�!r
1

)� X↵
A(
�!r
1

)

2
+

1

2
) (2.10)

where X↵
A is the fraction of association sites A on segments ↵ which are not bonded.

This fraction is given by X↵
A(
�!r
1

) = 1

1+

NP

↵

0=1

R
d�!r2⇢

↵

0 (
�!r2)

P

B2�(↵0)
X↵

0
B

(

�!r2)�↵↵

0
(

�!r1 ,�!r2)
, where ↵0
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represents the segments which can associate or form hydrogen bond with segments ↵

, �(↵0
) denotes all association sites on segment ↵0, and �↵↵0

(�!r
1

,�!r
2

) is given by

�↵↵0
(�!r

1

,�!r
2

) = [exp(�"assoc)� 1]y↵↵
0
(�!r

1

,�!r
2

) (2.11)

where  is a bonding geometric constant, � is the inverse temperature 1

k
B

T , "assoc

is the association energy, and y↵↵
0
(�!r

1

,�!r
2

) is the inhomogeneous cavity correlation

function of the reference hard sphere fluid. Assuming that the potential of mean

force is pairwise additive and using a weighted density approximation, this function

can be approximated as[36, 78],

y↵↵
0
(�!r

1

,�!r
2

) =
q

y↵↵
0

contact[{⇢↵(�!r1 )}]y↵↵
0

contact[{⇢↵(�!r2 )}] (2.12)

where y↵↵
0

contact[{⇢↵(�!r )}] is the bulk cavity correlation function at contact evaluated

at weighted densities {⇢↵} . In this work, y↵↵
0

contact[{⇢↵(�!r )}] is given by[78],
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where &i is given by

&i =
⇡

6

NX

↵=1

⇢↵(
�!r
1

)�i
↵, i = 0, 1, 2, 3 (2.14)

The weighted densities in the above equations are

⇢̄↵(
�!r
1

) =
3

4⇡�↵3

Z

|�!r 0��!r1 |<�
↵

d�!r 0⇢↵(
�!r 0) (2.15)

By taking the limit "assoc ! 1 , we reach complete association and chain for-

mation. The free energy due to chain formation Achain can be directly derived from

Aassoc (see the original publication[67] for more details).

As of now, the total Helmholtz free energy is obtained

A = Aid + Ahs + Aatt + Aassoc + Achain (2.16)
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The grand potential of a grand canonical ensemble, where volume V , temperature

T , and chemical potential µ of each species are fixed, can be written as

⌦ [{⇢↵}] = A [{⇢↵}]�
NX

↵=1

Z
d�!r 0⇢↵(

�!r 0)(µ↵ � V↵
ext(�!r 0)) (2.17)

where µ↵ is the chemical potential of segments ↵ , and V↵
ext is the external potential

acting on segments ↵ .

By minimizing the grand potential with respect to densities, the equilibrium den-

sity profiles ⇢equilibrium↵ (�!r ) can be obtained.

�⌦ [{⇢↵}]
�⇢↵(

�!r )

����
⇢
↵

equilibrium

= 0, 8↵ 2 {1, 2, ..., N} (2.18)

Combining Eq.(2.17) and Eq.(2.18) gives

��A[{⇢↵}]
�⇢↵(

�!r )

����
⇢
↵

equilibrium

= �(µ↵ � V ext
↵ (�!r )), 8↵ 2 {1, 2, ..., N} (2.19)

Solving Eq.(2.19) requires functional derivatives of the Helmholtz free energy func-

tionals. They are given by

��Aid

�⇢↵(
�!r ) = ln ⇢↵(

�!r ) (2.20)

��Ahs

�⇢↵(
�!r ) =

Z
d�!r

1

��[n�(
�!r
1

)]

�⇢↵(
�!r ) (2.21)

��Aatt

�⇢↵(
�!r ) =

NX

�=1

Z

|�!r ��!r1 |>�
↵�

d�!r
1

�uatt
↵�(|�!r ��!r

1

|)⇢↵(�!r1 ) (2.22)

��Aassoc

�⇢↵(
�!r ) =

X

A2�(↵)

lnX↵
A(
�!r )�1

2

NX

�=1

{�0}X

�0

Z
⇢�(

�!r
1

)
X

A2�(�)

(1�X
�

A(
�!r
1

))
� ln y��

0

contact[{⇢̄↵(�!r1 )}]
�⇢↵(

�!r ) d�!r
1

(2.23)

��Achain

�⇢↵(
�!r ) =

X

B2�(↵)

lnX↵
B(
�!r )� 1

2

NX

�=1

{�0}X

�0

Z
⇢�(

�!r
1

)
� ln y��

0

contact[{⇢̄↵(�!r1 )}]
�⇢↵(

�!r ) d�!r
1

(2.24)

where �(↵) denotes the set of association sites on segment ↵ and {�0} represents the set

of segment that can bond(associate) with segment � in chain term(association term).
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As mentioned above, we have chain formation when association energy is infinity. By

"assoc ! 1 and XA ! 0 , Eq. (2.23) reduces to Eq. (2.24). Note that sites A and

sites B are conceptually di↵erent. Sites A in Eq. (2.23) denotes association sites

that form hydrogen bonds, while sites B in Eq. (2.24) represents the sites involved

in covalent bonds.

After obtaining the functional derivatives, Equation 2.19 can be solved iteratively.

By further numerical manipulation, Equation 2.19 can be written in the following

form[67]:

⇢↵(
�!r ) = exp(�µM) exp[D↵(

�!r )� �V ext
↵ (�!r )]I

1,↵(
�!r )I

2,↵(
�!r ), 8↵ 2 {1, 2, ..., N}

(2.25)

where µM is the chemical potential of chain M (µM =
Pi=m

i=1

µi), m is the length of

the chain molecule, D↵(
�!r↵) is a function taking into account the excess free energy

functional derivatives and will be given below, and I
1

(I
2

) takes into account the chain

connectivity.

D↵(
�!r ) = 1

2

NX

�=1

{�0}X

�0

Z
⇢�(

�!r
1

)
� ln y��

0

contact[{⇢̄↵(�!r1 )}]
�⇢↵(

�!r ) d�!r
1

� ��Ahs

�⇢↵(
�!r )�

��Aatt

�⇢↵(
�!r )�

��Aassoc

�⇢↵(
�!r )

(2.26)

I
1,↵(

�!r ) =

8
><

>:

1,↵ = 1
R
I
1,↵�1

(
�!
r0 ) exp[D↵�1

(
�!
r0 )� �V ext

↵�1

(
�!
r0 )]�(↵�1,↵)(

�!
r0 ,�!r )d

�!
r0 ,↵ > 2

(2.27)

I
2,↵(

�!r ) =

8
><

>:

1,↵ = m
R
I
2,↵+1

(
�!
r0 ) exp[D↵+1

(
�!
r0 )� �V ext

↵+1

(
�!
r0 )]�(↵,↵+1)(�!r ,

�!
r0 )d

�!
r0 ,↵ < m

(2.28)

where m represents the length of one chain molecule, and � is given in Equation 2.11.

To solve for the equilibrium density profile and interfacial properties, a simple

Picard iteration is utilized but other techniques such as Newton-Raphson method
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can also be applied.

Once the equilibrium density profile was obtained, the interfacial properties such

as interfacial tension or more interesting stress profile which will be used in Chapter

3 can be calculated. It has been shown by Frink et al.[79] that the stress(PN � PT ,

where PN is the nomal pressure and PT is the tangential pressure) is essentially the

local excess grand potential. From iSAFT, this quantity can be calculated by the

following expression for a planar interface:

�s(�!r ) =
NX

↵=1

⇢↵(
�!r )[D↵(

�!r ) + n(�↵)

2
� 1] + �({n↵(

�!r )})+

1

2

NX

↵=1

NX

�=1

Z

|�!r ��!r1 |>�
↵�

d�!r
1

�uatt
↵�(|�!r ��!r

1

|)⇢↵(�!r1 )⇢�(�!r )+

NX

↵=1

⇢↵(
�!r )

X

A2�(↵)

(lnX↵
A(
�!r )� X↵

A(
�!r )
2

+
1

2
) + �P

(2.29)

where P is the bulk pressure, s denotes the stress, and the meaning of the rest of

variables is the same as previously introduced.

2.3 Electrostatic iSAFT

2.3.1 Electrostatic Functional

To describe electrostatic interactions by density functional theory, the electrostatic

Helmholtz free energy functional needs to be developed and included. The Helmholtz

free energy contribution can be included in the original iSAFT theory as a perturba-

tion from the reference hard sphere fluid. Based on Coulomb’s law, the Helmholtz

free energy can be written as

�Aex,C [{⇢i}] =
1

2

nX

i=1

nX

j=1

Z
d�!r

1

d�!r
2

�
ZiZje2⇢i(

�!r
1

)⇢j(
�!r
2

)

4⇡"
0

"r|�!r2 ��!r
1

| (2.30)
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where �Aex,C represents the excess free energy due to direct electrostatic interaction

between the ions, Zi is the valence, e is the elementary charge, and "
0

"r gives the

permittivity of the solvent. So this expression is based on a primitive model assump-

tion. Although the form of this electrostatic free energy functional is simple and easy

to understand, it is hard to converge due to the long-range nature of electrostatic

interactions. What’s more, it can be observed that a mean field approximation is

applied since no radial distribution function describing the electrolyte structure can

be seen in the above equation.

Instead of solving the equation above, the electrostatic contribution can be calcu-

lated from the local mean electrostatic potential.

�Aex,C [{⇢}] = 1

2
�e

nX

j=1

Z
d�!r

2

Zj⇢j(
�!r
2

) (�!r
2

) (2.31)

where  represents the local mean electrostatic potential and can be recognized as

the summation of electrostatic potentials of individual point charges.

 (�!r ) =
Z

d�!r
1

nX

i=1

Zie⇢i(
�!r
1

)

4⇡"|�!r ��!r
1

| (2.32)

where " is the dielectric constant "
0

"r, and ⇢i is the density of ion with index i.

This local mean electrostatic potential satisfies the Poisson’s equation. In 1-D,

Poisson’s equation can be read as[80]

d

dz

✓
"
d

dz
 (z)

◆
= �4⇡⇢c(z) (2.33)

where ⇢c is the charge density(
nP

i=1

Zi⇢i).

The equation can be solved by imposing proper boundary conditions. To calcu-

late charge distribution close to a charged surface, one boundary condition could be

d
dz (z) is 0 when z is su�ciently large. This boundary condition assumes that the
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mean electrostatic potential caused by the charged surface can be negligible when

the distance from the surface is large enough and the property of the fluid reaches its

bulk property. The other boundary condition could be  (z) is 0 when z is su�ciently

large.

The integrated form of the Poisson’s equation is given as following[81]

 ⇤(z) ⌘ �e (z) = 4⇡lB

nX

i=1

Z 1

z

dz0(z � z0)Zi⇢i(z
0) (2.34)

where lB is the Bjerrum length given by lB = e2

4⇡"0"rk
B

T . kB is Boltzmann constant,

and T is the absolute temperature. An equivalent form can be derived based on this

equation and it is given by

 ⇤(z) =  ⇤(0) + 4⇡lB

2

4
1Z

z

dz0z
X

i

Zi⇢i(z
0) +

zZ

0

dz0z0
X

i

Zi⇢i(z
0)

3

5 (2.35)

where  ⇤(0) is the electrostatic potential at the charged surface.

The local chemical potential due to direct Coulomb interaction can be recovered,

��Aex,C

�⇢i(z)
= Zi 

⇤(z) (2.36)

Plugging in this equation in the original Euler-Lagrange equation described before

leads to the following equation, based on which the equilibrated density profile can

be calculated,

D↵(
�!r ) = 1

2

NX

�=1

Z
⇢�(

�!r
1

)
� ln y��contact[{⇢̄↵(�!r1 )}]

�⇢↵(
�!r ) d�!r

1

�

��Ahs

�⇢↵(
�!r ) �

��Aatt

�⇢↵(
�!r ) �

��Aassoc

�⇢↵(
�!r ) � ��Aex,C

�⇢↵(
�!r )

(2.37)

⇢↵(z) = exp(�µM) exp[D↵(z)� Z↵ 
⇤(z)� �V ext

↵ (z)]I
1,↵(z)I2,↵(z) (2.38)
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2.3.2 Electrostatic Correlation

The electrostatic interaction described in the previous section neglects the short range

correlation between ions. Although it was found to be adequate at least for monova-

lent ions[82], the theory may fail when divalent ions are present. This electrostatic

correlation e↵ect can be included by approximating electrostatic free energy func-

tional by a quadratic functional Taylor expansion with respect to that of a bulk fluid

of densities ⇢bi .

Aex,elec[{⇢i}] = Aex,elec[{⇢bi}] +
R
d�!r

nP
i=1

�F ex,elec

�⇢
i

(

�!r )

[⇢i(
�!r )� ⇢bi ]+

1

2

R R
d�!r d

�!
r0

nP
j=1

nP
i=1

�2F ex,elec

�⇢
i

(

�!r )�⇢
j

(

�!
r0 )

[⇢i(
�!r )� ⇢bi ][⇢j(

�!
r0 )� ⇢bj] + ...

(2.39)

Recognizing that the direct correlation functions are defined as

�C(1)el
i = ���A

ex,elec[{⇢i}]
�⇢i(

�!r ) (2.40)

�C(2)el
ij = ���

2Aex,elec[{⇢i}]
�⇢i(

�!r )�⇢j(
�!
r0 )

(2.41)

Neglecting the higher order terms, Equation 2.39 can be written as

Aex,elec[{⇢i}] = Aex,elec[{⇢bi}]�
R
d~r

nP
i=1

�C(1)el
i [⇢i(~r)� ⇢bi ]+

1

2

R R
d~rd~r0

nP
j=1

nP
i=1

�C(2)el
ij [⇢i(~r)� ⇢bi ][⇢j(~r

0)� ⇢bj]
(2.42)

Taking functional derivative of the above equation and utilizing Equation 2.36 lead

to

��Aex,elec[{⇢i}]
�⇢j(

�!r ) = Zi 
⇤(�!r )�

nX

i=1

Z
d�!r

2

�C(2)el
ij (|�!r

2

��!r |)[⇢i(�!r2 )� ⇢bi ] (2.43)

The excess direct correlation function �C(2)el
ij (r) is defined as

�C(2)el
ij (r) = Cij(r) +

�ZiZje2

4⇡"
0

"rr
� Chs

ij (r) (2.44)
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This direct correlation function can be derived from OZ equation by proper closure.

It can be seen that the direct correlation functions due to Coulombic interaction and

hard sphere interaction are subtracted, which avoids the double counting of various

contributions. The mean spherical approximation(MSA) closure assuming equal hard

sphere diameter (restricted primitive model) gives

�C(2)el
ij (r) =

8
><

>:

�ZiZjlB[
2B
� � (B� )

2r � 1

r ], r  �

0, r > �
(2.45)

where

B =
��

1 + ��
(2.46)

and � is related to the Debye screening length by

 = 2�(1 + ��) (2.47)

The Debye screening length is given by

2 = 4⇡lB

NX

i=1

⇢biZ
2

i (2.48)

Now the Euler-Lagrange equation can be solved numerically.

For semi primitive model, the MSA solution has a more complicated form [83, 84].

For di < dj and 0  r  d
j

�d
i

2

�Cij(r) = 2lB[
ZiZj

2r
+ ZiNj �Xi(Ni + �Xi) +

di
3
(Ni + �Xi)

2] (2.49)

and for |d
j

�d
i

|
2

 r  (d
j

+d
i

)

2

, �C is given as

�Cij(r) =
lB
r
[ZiZj + (di � dj)f1 � rf

2

+ r2f
3

+ r2f
4

] (2.50)

where

f
1

=
Xi +Xj

4
[(Ni + �Xi)� (Nj + �Xj)]�

di � dj
16

[(Ni + �Xi +Nj + �Xj)
2 � 4NiNj]

(2.51)
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f
2

= (Xi�Xj)(Ni�Nj)+(di+dj)NiNj+(X2

i +X2

j )��
1

3
[di(Ni+�Xi)

2+dj(Nj+�Xj)
2]

(2.52)

f
3

=
Xi

di
(Ni + �Xi) +

Xj

dj
(Nj + �Xj) +NiNj �

1

2
[(Ni + �Xi)

2 + (Nj + �Xj)
2] (2.53)

f
4

=
(Ni + �Xi)2

6d2i
+

(Nj + �Xj)2

6d2j
(2.54)

where d is the hard sphere diameter, Z represents the valence, and N , X, and � are

calculated numerically based on

Xi =
Zi

1 + �di
� cd2i

1 + �di

Pn
j (⇢jdjZj)/(1 + �dj)

1 + c
Pn

j (⇢jd
3

j)/(1 + �dj)
(2.55)

Xi = Zi +Nidi (2.56)

�2 = ⇡lB

nX

i

⇢iX
2

i (2.57)

c =
⇡

2[1� ⇡
6

Pn
i ⇢id

3

i ]
(2.58)

2.3.3 Preliminary Results

Here, we show some preliminary results using iSAFT that incorporates electrostatic

contribution introduced above. Since a primitive model of electrolyte is employed,

we have to assign the dielectric constant. We use the relative permittivity of water

("r = 78.5) at 298 K. The first testing case is the density distributions and electrostatic

potential profiles of simple electrolytes close to charged surfaces. The results are

compared against available simulation results from Monte Carlo simulation in the

literature and presented in Figure 2.3 - 2.7. It can be seen that good agreement

between the theoretical prediction and simulation can be achieved.

Then we show the results for systems of negatively charge polyelectrolyte and

positive coions close to a charged surface with surface charge density Q�2/e = 0.125 at

di↵erent bulk electrolyte concentration (⇢�3 = 0.01, 0.06, 0.16, 0.22). Each negatively
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(a) Density distribution. (b) Reduced mean potential.

Figure 2.3 : Density distributions(normalized by bulk density) for cations(red) and
anions(blue) and mean electrostatic potential in a simple 1:1 electrolyte near a pos-
itively charged surface. �

+

= �� = � = 0.425 nm, Q�2/e = 0.3, C = 0.1 mol/L,
where � is the diameter of the ion, Q is the surface charge, e is the elementary charge
and C is the concentration.  ⇤ =  e/kT , where e is the elementary charge, k is the
Boltzmann constant and T is the absolute temperature. Lines are from iSAFT and
dots are from Monte Carlo simulation[1].

charged polyelectrolyte chain consists of 10 tangentially bonded spherical segments

(m = 10) with the size of 0.714 nm in diameter. So the overall valence of the

polyelectrolyte is �10. The coions are positively charged with the same size. The

density profiles calculated from iSAFT are shown in Figure 2.8 along with some results

from Monte Carlo simulation. Again good agreement can be found and the results

are comparable to the work by Li et al.[5].

2.4 Summary

In this chapter, the background of iSAFT classical density functional theory are

present. Further, iSAFT was extended to include the electrostatic contributions.

Good agreement between the results from iSAFT and those from Monte Carlo simu-
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(a) Density distribution. (b) Reduced mean potential.

Figure 2.4 : Density distributions(normalized by bulk density) for cations(red) and
anions(blue) and mean electrostatic potential in a simple 1:1 electrolyte near a posi-
tively charged surface. �

+

= �� = � = 0.425 nm, Q�2/e = 0.7, C = 1 mol/L. Lines
are from iSAFT and dots are from Monte Carlo simulation[1].

(a) Density distribution. (b) Reduced mean potential.

Figure 2.5 : Density distributions(normalized by bulk density) for divalent
cations(red) and monovalent anions(blue) and mean electrostatic potential in a sim-
ple 2:1 electrolyte near a negatively charged surface. �

+

= �� = � = 0.3 nm,
Q�2/e = �0.1685, C = 1 mol/L. Lines are from iSAFT and dots are from Monte
Carlo simulation[2].
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(a) Density distribution. (b) Reduced mean potential.

Figure 2.6 : Density distributions(normalized by bulk density) for monovalent
cations(blue) and divalent anions(red) and mean electrostatic potential in a sim-
ple 1:2 electrolyte near a negatively charged surface. �

+

= �� = � = 0.3 nm,
Q�2/e = �0.1685, C = 1 mol/L.

(a) Density distribution. (b) Reduced mean potential.

Figure 2.7 : Density distributions(normalized by bulk density) for cations(red) and
anions(blue) and mean electrostatic potential in a simple 2:2 electrolyte near a nega-
tively charged surface. �

+

= �� = � = 0.425 nm, Q�2/e = �0.1704, C = 0.5 mol/L.
Lines are from iSAFT and dots are from Monte Carlo simulation[3].
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(a) Polyelectrolyte. (b) Coion.

Figure 2.8 : Density distributions for polyelectrolytes and coions in a electrolyte near a
positively charged surface. � = 0.714 nm, Q�2/e = 0.125, ⇢�3 = 0.01, 0.06, 0.16, 0.22.
Lines are from iSAFT and dots are from monte-carlo simulation[4, 5].

lations is achieved.
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Chapter 3

Method of Moments from iSAFT and the
Formation of Microemulsions

Surfactants have wide range of industrial and commercial applications, i.e. sham-

poo, detergent, surfactant flooding in enhanced oil recovery(EOR). This chapter is

related to their application in EOR processes, where ultra-low interfacial tension is

required and optimal surfactant formulation is needed. The iSAFT density functional

theory is applied to study the mechanical property (stress or lateral pressure) of an

octane/water interface. This mechanical property can be related to Winsor R-ratio

through the Method of Moments developed by Fraaije et al. [22]. By implementing

the Method of Moments in iSAFT, the e↵ects of surfactant formulation variables

(temperature, surfactant tail or head size, surfactant architecture) on the formation

of microemulsions can be obtained. The trend from iSAFT is in good agreement with

what was observed in the experiments.

This work has been presented in the 2014 AICHE Annual Meeting[85].

3.1 Introduction

Surfactant flooding with the creation of middle-phase microemulsions has been widely

used to enhance the production of crude oil[52, 54]. Only an average of 35%-45% orig-

inal oil in place (OOIP) can be extracted after primary and secondary recoveries[86],

with large amount of crude oil left behind in the oil reservoirs. This is largely due to

the large value of interfacial tension in the reservoir and capillary trapping. Surfac-
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tants, being amphiphilic, can lower the interfacial tension, so that the oil trapped orig-

inally by capillary e↵ect can be more easily released and displaced by the injected flu-

ids, which enhances the oil production. In surfactant flooding processes, ultra-low in-

terfacial tension (< 10�3 mN/m) is required. Ultra-low interfacial tension often occurs

with the formation of middle-phase microemulsions[87]. To locate the optimal surfac-

tant formulation for ultra-low interfacial tension, formulation scan techniques[88], i.e.

salinity scan(ionic surfactants) and temperature scan, are followed experimentally at

the conditions of interest. These scan experiments can be time-consuming and ex-

pensive with such a large formulation variable space (chemical nature of surfactant

molecules, salinity, temperature, pressure, crude oil composition or alkane carbon

number(ACN))[89]. To narrow down the set of variables and speed up the acquisi-

tion of optimal surfactant formulations and ultralow interfacial tension, theoretical

approaches can be helpful. Following Winsor’s pioneering work in the 1950s, many

theoretical developments have been made to determine optimum conditions, namely

surfactant a�nity di↵erence(SAD), hydrophilic-lipophilic deviation(HLD)[90], Hel-

frich theory[91], etc. Recently, a method based on the mechanical property of the

interface(stress profile) and the theories of Helfrich[91], Murphy[92] and others[93]

was developed[22] which will be discussed shortly.

The stress profile (or negative lateral pressure) across the interface dominates

many interfacial phenomena and physical processes. For example, it was shown by

Cantor that Anesthesia is related to the compositional response of the lateral pres-

sure profile in bilayer membranes[94]. The change of the composition would cause

the redistribution of the lateral pressure in the membrane that alters the confor-

mation and functionality of cell proteins[95]. The lateral pressure also governs the

self-assembly of particles at interfaces. Aveyard et al. showed the aggregation of
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monodisperse spherical polystyrene particles at water/octane interface is due to the

change of lateral pressure modulated by surfactants[96]. Long et al. studied the

lateral pressure by Monte Carlo simulation and provided a unifying explanation for

the phenomena observed in confined environments which only occur under very high

pressure in bulk solution[97]. Related to microemulsions, the bending of surfactant

layer (consequence of stress) was shown to be important and incorporated with en-

tropy e↵ects for the first time by Miller et al.[98] to establish a thermodynamic model

for microemulsions. Fraaije et al.[22] proposed a method conceptually equivalent to

Winsor-R theory based on manipulation of the stress profile to determine the for-

mation of Winsor type microemulsions for di↵erent surfactant forumulations. This

method is referred to as Method of Moments. The idea is not new. Similar approach

was considered by Bowcott et al.[93] and Murphy[92] dating back to 1960s. However,

only thermodynamic foundation to calculate stress profile was established[99] at that

time. Recently, the Method of Moments was implemented based on the stress profile

calculated from Dissipative Particle Dynamics(DPD) simulation and good agreement

with experiments was found. In this chapter, we will implement the method in the

framework of the iSAFT density functional theory to provide insight into the e↵ect

of surfactant architecture on the formation of microemulsions.

3.2 Stress Profile from iSAFT DFT

According to Frink et al.[79], the stress profile is equal to the local excess grand po-

tential that can be calculated directly from iSAFT density functional theory for a

planar interface (See Equation 2.29). The background of iSAFT density functional

theory has been provided in Chapter 2 and will not be duplicated here. The stress

profile (stress(z) = PN � PT (z)) and interfacial tension are related through the me-
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chanical definition of interfacial tension for a planar interface � =
R
stress(z)dz =

R
(PN � PT (z))dz, where PN is the normal pressure (constant throughout the in-

terface) and PT is the tangential pressure, the value of which depends on z. This

stress profile(PN � PT (z)) can provide insights into the mechanical property of the

interface, which has been shown to be important in determining the bending state

of the interface[92] and other phenomena[100]. To validate the iSAFT model, the

density profile and stress profile obtained from iSAFT are compared against those

from molecular dynamics simulation(MD).

Here, we examine a model A/B/AB ternary mixture, where molecule(bead) A and

molecule(bead) B dislike each other and AB is a surfactant-like molecule consisting of

A and B bonded tangentially. Beads interact with each other through Lennard-Jones

potential, and two potential parameters need to be specified, namely � and ✏/kb. The

diameter � of all beads is set equally to 0.3 nm and interaction energy ✏/kb between

A or B beads is set to 300 K while that between A and B beads is set to 30 K.

Molecular dynamics simulation was performed in NVT ensemble using GRO-

MACS 4.6.5 software package. The simulation box of size 5.5 ⇥ 5.5 ⇥ 11.0 nm is

filled with a slab of A(4800 A beads) and a slab of B(4800 B beads), creating two

A/B interfaces due to the applied periodic boundary condition in all directions. 200

AB molecules are present in the system and they spontaneously participate at the

two interfaces. The modified Berendsen thermostat[101] was used to maintain the

temperature of the system to 300 K. The system was initially energy-minimized and

after a short NVT simulation (100 ps) the system was equilibrated in NVT ensemble

for 1 ns for data analysis. The stress profile was calculated using central force de-

composition method developed by Vanegas et al.[102] and their modified GROMACS

software package - GROMACS-LS is used.
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The iSAFT classical density functional theory calculation of the same A/B/AB

mixture was also performed using the same set of parameters under the same con-

dition. The bulk reduced density ⇢bulk�3 is set to 0.823 to match that obtained in

MD simulation. And the mole fraction of AB in bulk xbulk
AB is also specified to 0.004

according to the MD simulation. The results are shown in Figure 3.1. It can be seen

that the results from iSAFT agree very well with those from MD simulation. Both

MD and DFT gives positive stress, meaning the interface is under tension.

3.3 Results and discussion

3.3.1 Stress Profile of an Octane/Water Interface

In iSAFT, octane is modeled as four spherical beads bonded tangentially and the

water is modeled as one sphere with four association sites(two electron donors and

two accepters). The iSAFT parameters of octane molecule and water molecule are

determined by fitting to vapor pressures and saturated liquid densities. And the cross

interaction parameter(kij = 0.22) between octane and water is fit to the solubility of

water in octane. The value of kij will be adopted to describe the cross interactions

between surfactant tail and head, tail and water, and head and tail. The values of

parameters are provided in Table3.1.

The interfacial tension of an octane/water interface is calculated and compared

against experiment (Figure 3.2) and good agreement is achieved.

The stress profile and density profile of an octane/water interface at 298 K and

1 atm are given in Figure 3.4. From the figure, we can see that the largest constribu-

tion to the stress is on the water side of the interface. Unlike the octane side that has

a negative stress with small magnitude, the stress on the water side is huge and dom-
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Figure 3.1 : Comparison between iSAFT and MD for an A/B/AB mixture. The
upper panel shows the density profile from iSAFT (solid lines) and MD (circles).
The lower panel shows the stress profile from iSAFT (solid line) and MD (circles).
⇢bulk�3 = 0.823 and xbulk

AB = 0.004.
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Table 3.1 : Summary of Parameters

m �(Å) "/kB (K) "assoc/kB K/�3

water 1 3.0 328.6 1747.3 0.004432

octane 4 3.6 294.05

Head segments x 3.0 328.6 1747.3 0.004432

Tail segments y 3.0 294.05

Figure 3.2 : Interfacial tension of an octane/water interface as a function of temper-
ature. Dots are from experiments[6]. Line is from iSAFT.
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inates the value of interfacial tension(� =
R
stress(z)dz). This might be one of the

reasons why surfactant head group properties dominate the interfacial tension[103].

By definition, a region with positive stress is under tension, and a region with nega-

tive stress is under compression tending to expand. So it would be intuitive to think

that this flat octane/water interface with this stress profile would be favorable to be

concave toward the water phase so that the stress is released. Figure 3.3 gives the

stress profiles of the same octane/water interface at di↵erent temperatures(298 K,

330 K, 360 K) and 1 atm in real unit. We can see that the magnitude of the stress is

huge(around 100 MPa) compared with the bulk pressure (1 atm). This high value of

pressure in the inhomogeneous region has been shown by Long et al.[97] from Monte

Carlo simulation for fluids under confinement and it can be used to explain the phe-

nomena observed in the inhomogeneous region that will only occur in the bulk phase

at extremely high pressure [104, 105, 106, 107, 108, 109, 110]. As temperature is

increased, the interfacial tension decreases. The magnitude of the positive stress de-

creases with the negative stress roughly unchanged. The release of the tension on the

water side is perhaps due to the weakening of hydrogen bonding interaction, which is

indicated by the increase of the fraction of association sites not bonded Xa from the

theory in Figure 3.5.

The stress profile of a water/octane interface can be decoupled to three contribu-

tions: the contribution from octane-octane interaction, that from water-water inter-

action and that from cross interaction between octane and water. Each contribution

is shown in Figure 3.6. Several interesting points can be observed. First, the tension

on the water side of the interface is mainly due to the interactions between water

molecules and lower water density relative to its bulk value while the compression

on the octane side of the interface is mainly introduced by the interaction between
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Figure 3.3 : Stress(PN � PT ) of octane/water interface from iSAFT at 1 atm and
various temperature.

Figure 3.4 : Stress profile(grey) and density profile of a water(red)/octane(blue) in-
terface at 298 K and 1 atm.
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Figure 3.5 : Fraction of association sites not bonded Xa at various temperatures and
1 atm. The increase of Xa implies the weakening of hydrogen bonding between water
molecules.

octane molecules and the higher density(i.e. peaks at the interface) relative to its

bulk value. Second, the interaction between octane and water molecules has opposite

e↵ects on the two sides of the interface: on the octane side the interaction introduces

tension that helps to enhance the density of octane while on the water side it intro-

duces repulsion that tends to decrease the density of water. These two e↵ects can

be intuitively understood. Due to relatively high water density, water phase behaves

like an attractive wall and it attracts the octane molecules to the interfacial region,

resulting in an e↵ective tension that tends to bring octane molecules to a denser state.

On the other hand, the presence of octane phase disturbs the hydrogen bonding in-

teractions between water molecules and essentially results in an e↵ective repulsion in

that region.
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Figure 3.6 : Stress profile of a water/octane interface at 298 K and 1 atm. The total
stress profile is decoupled to three contributions: the contribution from octane-octane
interaction, that from water-water interaction and that from water-octane interaction.

Aside from temperature, the mechanical property of an oil/water interface can

be altered dramatically by the addition of surface active agent(surfactant). A small

amount of surfactant is capable of reducing interfacial tension between oil and water

by orders of magnitudes. Hereafter, the mechanical property of octane/water inter-

faces with surfactant molecules and the formation of microemulsions will be studied.

Before discussing the results, we need a surfactant model. Here as mentioned in Chap-

ter 2, we extended the Telo da Gama and Gubbins model and explicitly includes the

hydrogen bonding interactions between surfactant head and water. Each surfactant

head segment carries two independent association sites that can only form hydrogen

bonds with water molecules. The values of parameters have already been given in

Table 3.1.
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3.3.2 Method of Moments

Winsor[111] first clarified the types of microemulsions(Winsor I, Winsor II and Win-

sor III) in his Winsor R theory. The theory can help qualitatively understand the

e↵ects of amphiphiles formulation(surfactant nature, temperature, salinity, and etc)

on the types of microemulsions produced. However, the Winsor R theory is not

straightforward to implement due to the ambiguous definition of the interfacial layer:

this renders calculating cohesive energies between di↵erent species di�cult. Concep-

tually, the Winsor R-ratio (R) describes the bending tendency of the flat interfacial

layer. If R > 1, the interfacial layer tends to bend toward water phase and a water-

in-oil microemulsion (Winsor II) is produced. This bending tendency of the interface

depends on the mechanical properties of the flat interface or forces exerted on that

interface, which can be unveiled from the aformentioned stress profile. Based on

this interpretation, a more quantitative Winsor R type of theories (Method of Mo-

ments) was developed by Fraaije et al.[22]. This idea is not new. Similar approaches

were proposed by Murphy[92] and Bowcott et al. [93]. However, an e↵ective way of

calculating stress profile was not available which prevented the theory from further

application. Here, we will apply iSAFT to obtain the stress profile and study the

formation of microemulsions.

The key equations used in this work for a planar interface are given in Equation

3.1,

Mk =

Z
s(z)zkdz

� = M
0

⌧ = �M
1

, (whenM
0

= 0)

(3.1)

where Mk is the kth moment of stress profile(s(z)), � denotes the interfacial tension,
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and ⌧ denotes the surface torque density. What should be noted is that calculating

surface torque density requires the interfacial tension to be 0 (which is essentially the

case when a microemulsion forms) so that the determination of the position of neutral

surface[92] is no longer needed. Hereafter, all the results are obtained at zero tension

if not mentioned explicitly. For a planar interface, according to Helfrich[112, 113], the

surface torque density is equal to kc
0

, where k represents bending modulus and c
0

is

the spontaneous curvature. According to Fraaije et al., the surface torque density is

su�cient to determine the optimal condition for the middle-phase microemulsion[22].

The relationship between surface torque density (⌧) and Winsor R-ratio is given in

Equation 3.2.

⌧ = 0 ⌘ R = 1

⌧ < 0 ⌘ R > 1

⌧ > 0 ⌘ R < 1

(3.2)

For this relationship to hold, the oil phase should be located on the left of the cal-

culation domain and water phase on the right. This condition was not mentioned in

the original publication.

It was shown that this method is capable of successfully capturing the dependence

of the phase behavior of ternary ionic surfactant/oil/water mixture on salinity. The

optimal salinity obtained from the Method of Moments implemented in Dissipative

Particle Dynamics is in good agreement with experimental data[22]. Here, we im-

plement this method to show the capability of iSAFT in capturing the physics of

surfactant containing solutions and predict the e↵ect of nonionic surfactant formula-

tion on the formation of microemulsions.
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3.3.3 E↵ect of Temperature

Temperature has a strong e↵ect on the phase behavior of ternary nonionic surfac-

tant/oil/water system. At low temperature, surfactant heads are hydrated due to the

strong hydrogen bonding interactions between surfactant heads and water molecules.

Hence, surfactant molecules tend to maximize their contact with aqueous environ-

ment and an oil-in-water microemulsion is favorable(R < 1). When temperature is

increased, the interaction between water molecules and surfactants are weakened so

that the apolar interaction between surfactant and oil dominates. Then, the surfac-

tants tend to optimize their contact with oil molecules and a water-in-oil microemul-

sion is favored(R > 1). At the right temperature in between, the interaction between

surfactant and oil is equivalent to that between surfactant and water, and a middle-

phase microemulsion is favorable(R = 1). In this case, the interactions between the

surfactant layer and oil and that between the surfactant layer and water are thought

to be balanced. This balanced temperature is usually referred to as phase inversion

temperature[114].

To see whether this physics can be captured from iSAFT, the surface torque den-

sities of a series of model nonionic surfactants were calculated based on the Method

of Moments. The results are presented in Figure 3.7. From the figure, we can see that

the surface torque density decreases as the temperature increases. (As shown in Equa-

tion 3.2, ⌧ > 0 is equivalent to R < 1, meaning an oil-in-water microemulsion forms,

and ⌧ < 0 means a water-in-oil microemulsion forms. ⌧ = 0 suggests a middle-phase

microemulsion is produced.) For the case of H5T6 surfactant(red line), an oil-in-water

microemulsion forms at 298 K but, at 360 K, a water-in-oil microemulsion is favored,

with phase inversion temperature in between. The results also suggest that the phase

inversion temperature increases as the hydrophicility rises(either by increasing head
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size or decreasing tail size). These trends from iSAFT agree qualitatively with the

experimental observation[115].

3.3.4 E↵ect of Head/Tail Size

The phase behavior of surfactant/oil/water systems also depends on the structure

of surfactant molecules. Based on hydrophilic-lipophilic balance(HLB) analysis[116],

surfactants being more hydrophilic have higher solubility in aqueous phase and an

oil-in-water microemulsion forms more easily, while more hydrophobic surfactants

(although still amphiphilic) tend to be solubilized in the oil phase, resulting in a

water-in-oil microemulsion. This experimentally observed trend can also be predicted

from our model.

Here, we show the e↵ects of surfactant head and tail sizes on the microemulsion

formed at three di↵erent temperatures (298 K, 330 K, 360 K) and 1 atm from iSAFT.

The e↵ect of head size is illustrated in Figure 3.8 and that of the tail size in Figure 3.9.

When surfactant tail size is fixed, increasing the head size enhances the hydrophilicity

of the surfactant molecules. As a result, a water-in-oil microemulsion(⌧ < 0 with small

head size) can be transformed to an oil-in-water microemulsion(⌧ > 0 with large head

size). Similarly, increasing the tail size makes the surfactant less hydrophilic, so that

the original oil-in-water microemulsion (⌧ > 0 with small tail size) becomes a water-

in-oil microemulsion(⌧ < 0 with large tail size).

3.3.5 Single-Tail Surfactant vs Double-Tail Surfactant

Compared with the studies on single-chain surfactants, relatively less comprehensive

understanding has been made on the e↵ect of branching on surfactants interfacial

properties. It was known experimentally that some double-chain surfactants[117,
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Figure 3.7 : E↵ect of temperature on surface torque density at zero interfacial tension
and 1 atm.
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Figure 3.8 : E↵ect of head size on surface torque density at various temperature,
1 atm and zero interfacial tension. The tail size is fixed to 6 segments.

Figure 3.9 : E↵ect of tail size on surface torque density at various temperature, 1 atm
and zero interfacial tension. The head size is fixed to 5 segments.
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118, 119] are capable of producing ultra-low interfacial tensions. We also know that

interfacial tension is a function of surfactant’s ability to reduce the interfacial tension

and the density of surfactant molecules present at the interface. It was shown by

Emborsky et al.[120] and other researchers[121, 122] using theoretical approaches

that double-tail surfactants are less e↵ective in partitioning to oil/water interface(i.e.

they need higher bulk surfactant concentration to reach a certain amount of surface

excess at the interface) compared with their equivalent single-tail surfactants. On

the other hand, double-tail surfactants are more e�cient in reducing the interfacial

tension for a given surface density of surfactant molecules at the interface compared to

single-tail surfactants. Their e�ciency in reducing the interfacial tension is attributed

to the greater excluded volume e↵ect from the two surfactant tails that reduces the

contact between oil and water[120]. Double-tail surfactants are also known to favor

the formation of inverse micelles and water-in-oil microemulsions[123]. This can also

be rationalized from the theory of packing parameter developed by Israelachvili et

al.[23].

Here, we compare the surface torque densities for two model nonionic surfactants

- H5T6 and T3H5T3. H5T6 is a single chain surfactant while T3H5T3 is a tri-

block copolymer (a double-tail surfactant, other types of double-tail surfactants with

branched tails can be readily studied in iSAFT[124]). It is anticipated that T3H5T3

favors the formation of water-in-oil microemulsions more than H5T6 due to its bulky

hydrophobic parts. The prediction from iSAFT (Figure 3.10) is consistent with our

anticipation. Again, the calculations are performed at 1 atm and zero interfacial ten-

sion which is needed for the formation of microemulsions. We can see that over the

temperature range, the double-tail T3H5T3 surfactant always produces a water-in-

oil microemulsion. On the other hand, the single-tail H5T6 surfactant can produces
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Figure 3.10 : Surface torque densities of single tail H5T6 and double-tail T3H5T3
surfactants at zero interfacial tension and 1 atm.

an oil-in-water microemulsion at low temperature and undergoes phase inversion as

temperature raises.

To better understand why this model double-tail surfactant cannot produce an

oil-in-water microemulsion at low temperature, we investigated the microscopic me-

chanical property of the interface or stress profile.

The stress profiles of the tensionless oil/water interfaces with H5T6 and T3H5T3

at 298 K and 1 atm are given in Figure 3.11(a) and Figure 3.11(b), respectively, along

with density profiles(Figure 3.11(c) and Figure 3.11(d)). From the density profiles

we can see that, as discussed before in the work by Emborsky et al.[120], double-tail

surfactant(T3H5T3) is more e�cient in reducing the interfacial tension, and lower

surfactant surface concentration is needed to produce ultra-low(0) interfacial tension

compared with the single-tail surfactant(H5T6) studied in this case. Although the
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(a) (b)

(c) (d)

Figure 3.11 : Density profiles(c, d) and stress profiles(a, b) of single-tail surfactants(a,
c) and double-tail surfactants(b, d) under zero tension at 298 K and 1 atm. In d, the
density profiles of the two tails are overlapping.
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interfacial tensions are both equal to zero, the stress profiles or the microscopic me-

chanical property of the interfaces are very di↵erent. The stress profile of the interface

with single-tail surfactant(Figure 3.11(a)) has three main peaks: 1 positive peak (un-

der tension) and two negative ones (under compression). The negative stress on the

water-rich region which was not observed in the bare octane/water interface is pri-

marily due to the presence of surfactant molecules and the staggering of surfactant

heads into water phase. Because of the existence of this compressed region on the

water side of the interface, water wants to expand and be the continuous phase, and

an oil-in-water microemulsion forms. On the other hand, for the double-tail surfac-

tant(Figure 3.11(b)), the head group cannot stagger far into the water phase due to

the constraint imposed by the tails. As a result, no compressed region is present

on the water side of the interface. The stress is negative on the oil side(under com-

pression) and positive on the water side(under tension). Hence, the oil side tends to

expand and water side tends to shrink. The overall e↵ect is: the interface tends to

bend toward the water phase and a water-in-oil microemulsion forms.

Although the excluded volume e↵ect of the tails is important to surfactants e�-

ciency in lower the interfacial tension, the constraining e↵ect of surfactant tails on

the configuration of surfactant heads should not be ignored. Due to the presence of

double tails, the surfactant heads are more constrained in the water rich region close

to the oil phase so that the tension in that region is released more e�ciently.

3.4 Conclusion

In this work, the stress profile was obtained from iSAFT density functional theory

and compared with molecular dynamics simulation results. Good agreement between

theory and MD simulation was observed. The Method of Moments was implemented
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in the iSAFT framework to study the e↵ects of surfactant formulation on the forma-

tion of microemulsions. The e↵ects of temperature, head size, tail size and surfac-

tant structure(branching) were studied and compared with experimentally observed

trends. The theory showed trends consistent with experiments. This implementation

of iSAFT and extension of Winsor-R theory using the Method of Moments can be

used to facilitate planning of experiments by scanning surfactant formulations and

conditions. As a limitation in this work, no micelle formation is considered. However,

micelles limit the e↵ectiveness of surfactants in lowering the interfacial tension, which

will be the subject of next chapter.
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Chapter 4

E↵ect of Surfactant Architecture on Micelle
Formation and Interfacial Tension

4.1 Introduction

Surfactants play important roles in commercial and industrial applications, such as

personal care products and enhanced oil recovery (EOR)[54, 125]. EOR has emerged

during past decades as a method to recover oil trapped in the reservoir rock after

water flooding. As an EOR technique, surfactant flooding involves injection of sur-

factants into a reservoir to reduce the interfacial tension between the oil and water

phases. At lower interfacial tension, crude oil trapped by capillary e↵ects becomes

mobile and can more easily be displaced by injected fluids, which results in higher

production. Researchers have found that ultralow interfacial tension (below 10�3

mN/m) usually appears with a thermodynamically stable middle-phase microemul-

sion. By optimizing surfactant architecture according to reservoir composition and

conditions (temperature, pressure, salinity, etc), the middle-phase microemulsion can

be obtained, reaching ultralow interfacial tension and increasing oil recovery e�ciency.

Winsor[111] proposed the R-ratio theory to describe the phase behavior of ternary

oil/water/surfactant systems. The R-ratio is defined as the ratio of energies of inter-

action between surfactant layer and oil-rich phase to that between surfactant layer

and water-rich phase. For a planar surfactant layer, if the interaction between sur-

factants and oil phase is more favorable, corresponding to R > 1, the surfactant layer
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would tend to increase the area of contact with the oil phase and bend toward the

water phase. Hence, oil would tend to be the continuous phase and a water-in-oil

microemulsion is favored. If the interaction between surfactant layer and water phase

is greater, which corresponds to R < 1, water tends to become the continuous phase

and an oil-in-water microemulsion is favored. Otherwise, if the interaction energies

are the same, which corresponds to R = 1, a middle-phase microemulsion is favor-

able. The R-ratio can also be viewed as the tendency of surfactant layer to become

convex toward the oil phase over the tendency of surfactant layer to become convex

toward the water phase. Following Winsor’s pioneering work, Fraaije et al.[22] re-

cently proposed an analogous but more quantified method to predict the formation of

a microemulsion, referred to as Method of Moments. In this model, the stress profile

across a planar interface is calculated, based on which the surface torque density is

examined. The surface torque density can be interpreted as the tendency of surfactant

layer to become convex toward oil minus the tendency of surfactant layer to become

convex toward water, similar to Winsor R-ratio. Thus, it was shown that an R-ratio

equal to 1 is equivalent to surface torque density equal to 0, at which condition a

middle-phase microemulsion is favorable. In Fraaije et al.’s work, the stress profile

was calculated from Dissipative Particle Dynamics[126]. The stress profile can also

be calculated from Molecular Dynamics Simulation[102], or Classical Density Func-

tional Theory[127]. The Method of Moments quantitatively bridges the gap between

surfactant architecture and their bulk phase behavior. But a challenge remains in

this method: it requires interfacial tension to be 0 and its accuracy depends on the

method used to calculate interfacial tension. The ability of surfactant to acquire

ultralow interfacial tension is determined by its e�ciency at the oil-water interface,

which is influenced by the equilibrium among micelles, surfactant monomers in so-
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lution and surfactant at the interface. This equilibrium is achieved when surfactant

concentration reaches the critical micelle concentration (CMC). To correctly calcu-

late interfacial tensions and apply Method of Moments, a model has to capture this

equilibrium, the formation of micelles and the CMC in the first place. However, none

of the previous mentioned models has this capability, which contributes to part of

our motivations.

Several models have been proposed to describe micelle formation and predict the

CMC. Although empirical correlations may be established based on fitting to ex-

tensively measured data[128], predictive theoretical models are preferred since they

require less to fit while providing greater understanding of the physics behind micelle

formation. Two approaches are usually applied to construct models predicting the

CMC[129]. One is the phase-separation approach, in which the micelle is assumed

to be a bulk homogeneous surfactant rich phase[130]. The CMC is obtained by con-

ducting phase equilibrium calculations. But this assumption is questionable since the

distribution of surfactant molecules inside a micelle is not uniform. The other ap-

proach is the kinetic or mass-action approach[131], which involves solving the ‘chem-

ical’ equilibrium between surfactant monomers and micelles. Parameters including

the stability constants are fit to experimental CMC data. However, although the

experimental CMC values may successfully be reproduced, neither molecular-scale

structural information of the micelle nor interfacial properties such as interfacial ten-

sion is available from these two approaches.

Recently, models based on statistical mechanics such as classical density functional

theory (DFT) have been developed to model the meso-scale structure of complex flu-

ids. DFT has shown its strength in modeling inhomogeneous and complex fluids

and excellent agreement with molecular simulations and experiments for a variety of
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systems, including the behavior of polymer brushes[132, 133, 134, 135, 136], phase

behavior and structure of block copolymers[137, 138, 139], interfacial properties of

oil/water systems[140, 36], and the impact of surfactant architecture on interfacial

properties[120], etc. The theory can be computationally more e�cient than molecu-

lar simulations since density fields rather than trajectories of individual molecules are

calculated, and the method takes advantage of system symmetry. More importantly,

due to the limitation of computing resources, molecular simulation cannot model true

thermodynamic equilibrium between surfactant monomers and aggregates. Because

low surfactant monomer concentration in the bulk would result in large numbers of

solvent molecules in the simulation box, simulations cannot be e�ciently conducted

within reasonable period of time, while DFT does not have this issue. These ad-

vantages make DFT a more suitable approach in modeling micelle formation and

surfactant phase behavior compared with simulation techniques.

The goal of this work is to demonstrate the feasibility of applying interfacial Statis-

tical Associating Fluid Theory(iSAFT) DFT[78, 67] to predict the CMC and describe

micelle/reverse micelle structure for model nonionic surfactants, and to establish the

theoretical basis for molecular understanding of the impact of surfactant architecture

on surfactant phase behavior. In this work, we apply iSAFT to investigate the e↵ect

of surfactant architecture on the CMC, the micellar structure, aggregation number,

and interfacial tension. Furthermore, the formation of swollen micelle and reverse

swollen micelle are also studied. To our knowledge, this is the first time DFT is

applied to model such systems.
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4.2 Parameter Estimation

In iSAFT, five physical model parameters, m , � , " , "assoc , and K, are involved.

m represents the number of segments in each molecule, � denotes the hard sphere

diameter of a segment, " represents the depth of Lennard-Jones interaction energy,

"assoc is the association energy and K denotes the bonding volume. The optimum set

of these five parameters are regressed such that properties such as vapor pressures

and saturated liquid densities calculated from the theory agree with experimental

data. In this work, the systems involve water, oil(octane) and surfactant molecules.

As mentioned above, water is modeled as one spherical segment with four association

sites: two electron donors and two acceptors. Octane is modeled as a chain that

consists of 4 tangentially bonded spherical segments, each segment representing two

CH
2

group. Surfactants, being amphiphilic, are modeled as a chain built of oil-like

segments and water-like segments[120, 66, 141].

The comparison of vapor pressures and saturated liquid densities between results

from iSAFT and experiments are shown in Figure 4.1. For the segments in the head

of surfactants, the water diameter and Lennard-Jones energy are used. Instead of four

association sites, each head segment carries two association sites (both are electron

donor sites). This model surfactant shares some similarity with the poly (ethylene

oxide) alkyl ether (CxEy) surfactants. On one hand, the model surfactant is nonionic

and has both hydrophobic and hydrophilic segments. On the other hand, each hy-

drophilic segment can form hydrogen bond(s) with water, similar to the ethoxy(EO)

group in CxEy surfactant. So in the Results and Discussion section, we will com-

pare with experimental data of some CxEy surfactants to qualitatively validate our

approach. The schematics of the model water, octane, and surfactant molecules are

shown in Figure 2.2. The values of parameters used are given in Table 4.1. Binary
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Table 4.1 : Summary of Parameters

m �(Å) "/kB (K) "assoc/kB K/�3

water 1 3.0 328.6 1747.3 0.004432

octane 4 3.6 294.05

Head segments x 3.0 328.6 1747.3 0.004432

Tail segments y 3.0 294.05

interaction parameter between water and octane is fitted to solubility of octane in

water, and the final value is 0.07. For the cross interaction between water and head

segments and between octane and tail segments, the binary interaction parameter

is 0. For the cross interaction between water and tail segments, and between head

segments and octane or tail segments, "/kB is set to 100 K, mimicking unfavorable

interaction between unlike components.

A computational grid is defined with spacing of 0.05� between density points.

To simplify the calculation, we assume the system is spherically symmetric and the

origin of the coordinate system is at the center of the micelle. In other words, the

density profile or structure of the micelle is only a function of radial distance r from

the center of micelle. The aggregation number (number of surfactant molecules in

one micelle) is obtained by integrating the equilibrated density profile over the space.

For calculations of interfacial tension isotherm, the interface is assumed planar. The

interfacial tension � is the excess grand potential, � = ⌦�⌦

bulk

A , where ⌦bulk and ⌦

are the grand potentials of the bulk phase and of the system respectively, which are

obtained from Eq. (2.17).
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Figure 4.1 : Liquid density(a, c) and saturated vapor pressure(b, d) of water and
octane respectively from theory(line) and experiments(circle). Solubility of octane in
water(e) from theory(line) and experiments[7](circle).

4.3 Results and Discussion

4.3.1 Water/surfactant binary mixtures

a. Determination of the CMC

In surfactant systems, the CMC is defined as the minimum concentration of sur-

factants necessary to form stable micelles. By assuming that the micelle formed is

spherically symmetric[142], the CMC can be determined by iSAFT DFT written in

spherical form. To obtain the value of the CMC, we compare the grand potentials of

the systems with and without the formation of a micelle at the same bulk surfactant

concentration. Since volume, temperature, and bulk chemical potentials are fixed,

the system with lower grand potential is the stable one. Hence, the CMC can be

regarded as the bulk surfactant concentration when the grand potential of system
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with a micelle is the same as in the system without a micelle.

In Figure 4.2, we show the grand potential as a function of bulk surfactant mole

fraction for H
5

T
4

surfactant (5 head segments and 4 tail segments). We can observe

that at low surfactant concentration, the system with a micelle in the center has

greater grand potential than that without a micelle, which means the micellar system

is not stable and the CMC has not been reached. As we increase the concentration of

surfactants in bulk, the grand potential of the micellar system decreases and crosses

that without a micelle. At the cross, the micellar phase is as stable as the non-

micellar phase; this is the CMC. If we further increase the bulk concentration of

surfactants, the grand potential of micellar phase further decreases, which means the

micellar phase is energetically more favorable and more micelles will form until the

bulk surfactant concentration is reduced to the CMC. Note that only one micelle is

considered in our calculation and hence the interaction between micelles are neglected.

b. Micelle structure

Figure 4.3 shows the reduced number density profile of surfactant and water as a

function of radial distance r from the center of a micelle. As we can see, the structure

of the micelle formed by H
5

T
4

surfactant is similar to the conventional picture of a

micelle structure. In the center of the micelle, hydrophobic tail segments aggregate to

expel hydrophilic segments and form a hydrophobic core. The iSAFT DFT predicts a

depletion of surfactant tail at the center of micelle, which is also observed in molecular

simulations[8, 143]. The average density of hydrophobic segments (T4) in this inner

core is approximately equal to the reduced bulk density (⇢�3 = 0.6815) of an alkane

built of four tail segments at the same temperature. The hydrophilic head segments

are exposed to water molecules and fully hydrated. The hydration of the head groups

e↵ectively expands the head group helping to stabilize the micelle structure. We can
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Figure 4.2 : Comparison of Grand Potential for the CMC determination.

also observe that the radius of the micelle is approximately 8� which corresponds to

24 Å; this value is consistent with experimentally measured values ranging from 22

to 24 Å[144, 145]. The water density is essentially zero inside the hydrophobic core of

the micelle, and increases monotonically to its bulk value. Since the model surfactant

shares some similarity with poly (ethylene oxide) alkyl ether (CxEy) surfactant, it is

reasonable to compare the micellar structure predicted from our model with that from

molecular dynamics simulation[8] of CxEy, which is reprinted in the bottom panel in

Figure 4.3. Instead of density profile, only center-of-mass based radial distribution

function is available. The radial distribution function is defined as the density profile

normalized by a constant - average density in the simulation box. It can be seen that

the micelle from iSAFT calculation is similar to that from MD simulation. What

has to be pointed out is, in MD simulation, the number of surfactants in a micelle is
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artificially set, which may a↵ect the structure of the micelle[8].

Figure 4.3 : The top panel shows the structure of micelle formed by H
5

T
4

surfactants
from DFT calculation. The bottom panel is the radial distribution functions g(r) for
micelle formed by 40 C

12

E
5

surfactant molecules. Reprinted with permission from ref
[8]. Copyright 2011 American Chemical Society.

c. E↵ect of surfactant architecture on the CMC

The e↵ect of head size on the CMC is obtained. The size of tail is fixed to 4

tail segments, and the head size ranges from 4 to 7 segments. Experimentally, the
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CMC increases monotonically as the head size rises[146], same as what we observe

from iSAFT (Figure 4.4a). When the head size increases, the hydrophilicity of sur-

factant goes up that increases the solubility of surfactant in water. Thus, a higher

concentration of surfactant molecules is necessary to form aggregates. The larger

than expected change in the CMC with the number of head segments could indicate

that the hydrogen bonding interaction is too strong and needs to be revised to show

quantitative agreement.

For the e↵ect of tail size on the CMC, the head is fixed to 6 segments and the tail

size is changed consecutively from 3 to 6 segments. The result is shown in Figure 4.4b.

When the size of tail increases, the CMC decreases. This is in qualitative agreement

with experimental observation[147]. The model shows larger dependence of the CMC

on tail length than seen experimentally. This might be due to the lack of attraction

between water and tail groups in the model.

Experimental results show that the CMC depends much more strongly on the size

of tail than that of head. The experimental results[146, 147] showing the CMC as a

function of the size of tail and head are summarized in Table 2. We can observe that

the CMC remains in the same order of magnitude when the head size is altered from

four ethoxy groups to eight ethoxy groups, but it changes orders of magnitude when

the tail size is increased from 10 alkyl groups to 14 alkyl groups. This experimental

trend can be captured qualitatively by iSAFT. From iSAFT, the CMC rises roughly

by 4 times when the head size is increased by one ethoxy group, but it decreases

roughly by 40 times when the tail size is increased by one CH
2

group (one tail segment

represents 2 CH
2

groups). Hence, the CMC depends much more strongly on the size

of surfactant tail, which is consistent with experimental observation.

d.E↵ect of surfactant structure on aggregation number
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Figure 4.4 : E↵ect of surfactant architecture on critical micelle concentration. (a)
The e↵ect of head size on the critical micelle concentration. All surfactants have 4
tail segments. (b) The e↵ect of tail size on the critical micelle concentration. All
surfactants have 6 head segments.
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Table 4.2 : E↵ect of head size and tail size on the CMC from experiment

From ref. [146] C
12

E
4

C
12

E
6

C
12

E
8

CMC(mole/cm3) at 30�C 5.3 ⇤ 10�8 6.8 ⇤ 10�8 7.6 ⇤ 10�8

From ref. [147] C
10

E
8

C
12

E
8

C
14

E
8

CMC(mole/liter) at 30�C 9.3 ⇤ 10�4 6.9 ⇤ 10�5 8.0 ⇤ 10�6

Another physical quantity associated with surfactant systems is the aggregation

number. It describes the number of surfactant molecules present in a micelle. This

quantity is relatively hard to measure experimentally, involving the use of static

light scattering[148], fluorescence quenching methods[149], etc. And the aggregation

number measured experimentally is the mean aggregation number but the micelles

are not truly monodisperse; there is continual interchange between molecules in the

bulk phase and the micelles. In iSAFT, the mean aggregation number of a micelle can

be calculated from the density profile, and the results are shown in Figure 4.5. From

the figure, we can see that the aggregation number is in the range of 30 � 70; this

is consistent with experimental values in the range of ionic and nonionic surfactant

molecules[149]. It is observed that when the size of tail increases, the number of

surfactant molecules present in the micelle also rises. But when the size of head

increases, the aggregation number decreases. In other words, when the hydrophilicity

of surfactant increases (either by decreasing the tail size or increasing the head size),

the aggregation number would decrease. This observation can be explained from the

point of view of surfactant packing in the micelle[150]. The conical shape of the

hydrated surfactant determines the size of the micelle. Larger tail or smaller head

would result in favorable shape contributing to greater aggregation number.
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Figure 4.5 : E↵ect of surfactant structure on aggregation number. (a) The e↵ect of
tail size on the aggregation number. All surfactants have 6 head segments. (b) The
e↵ect of head size on the aggregation number. All surfactants have 4 tail segments.
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e. E↵ect of surfactant structure on interfacial tension

Due to its amphiphilic nature, surfactant molecules spontaneously partition to

the interface and lower the interfacial tension. This is why surfactants find great

application in the field of enhanced oil recovery, personal care products, etc[54, 125].

For these applications, it is helpful to have some insights into the e↵ect of surfactant

structure on interfacial or surface tension. Previous work with iSAFT[120] did not

consider micelle formation and specific association sites. In this work, we take both

micellization and association into account, and obtain the interfacial tension isotherm

for each specific surfactant.

Here we investigate the binary mixtures consisting of water and surfactant. The

surfactants of interest are H
4

T
4

, H
5

T
4

, H
6

T
4

, H
6

T
5

, and H
6

T
6

. The CMCs were

obtained by conducting iSAFT calculations in spherical coordinates at constant tem-

perature (298 K) and pressure (1 bar). The interfacial tensions � are obtained from

iSAFT by calculating the vapor-liquid interfacial profile of a planar interface at con-

stant temperature and over a range of surfactant concentrations with � = ⌦�⌦

bulk

A .

Here, the assumptions we made are: 1) the surface is planar and symmetric in the

x� y plane; 2) the CMCs are not changed when the pressure is changed from 1 bar

to vapor/liquid coexistence condition at 298 K since such a small change in pressure

has little e↵ect on liquid phase properties.

The iSAFT results, shown in Figure 4.6, are in very good qualitative agreement

with experimental results given by Lin et al.[9] and Zhmud et al.[10], which are

reprinted in Figure 4.7. Some observations can be made. The interfacial tension

is constant for surfactant concentrations above the CMC since additional surfactant

partitions to micelles instead of the vapor-liquid interface. We also observe that a

surfactant with smaller head or larger tail is more e�cient in lowering the interfacial
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tension when the concentration of surfactant is below its CMC. Thus a more hy-

drophobic or less hydrophilic surfactant partitions more readily to the interface and

has a lower CMC. Traube’s rule[151] can be observed in the second plot, where each

increase in surfactant carbon number shifts the interfacial tension curve by decreas-

ing surfactant concentration a constant factor. A surfactant with a smaller head can

reach lower interfacial tensions at concentrations above the CMC, which is in quali-

tative agreement with experiment[119]. Interstingly, the interfacial tension above the

CMC is independent of tail length. So the e↵ectiveness of a surfactant in lowering

the interfacial tension is more a↵ected by the head of the surfactant.

4.3.2 Water/octane/surfactant ternary mixtures

a. Critical micelle concentration and swollen micelle

The results of water/surfactant binary mixtures were discussed, but what will

happen to the micelles when we introduce oil into the system? iSAFT predicts the

tendency for oil to be solubilized in the center of a micelle, a swollen micelle.

The CMC for a ternary mixture is determined similar to that for a binary mixture.

A series of flash calculations are done at 25 �C and 1 bar with di↵erent concentrations

of surfactant in the aqueous phase. The CMC is determined based on the grand

potential of the system with or without micelle formed. The structure of a swollen

micelle is shown in Figure 4.8. It is observed that octane molecules accumulate in

the center of the micelle and surfactant helps to decrease the contact between octane

and water, hence lowering the free energy of the system.

The CMCs of octane/water/surfactant ternary mixtures are given in Figure 4.9.

The CMCs follow the same trend as those of water/surfactant binary mixtures. The

presence of oil slightly decreases the CMC values because octane helps stabilize the
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Figure 4.6 : Surface tension as a function of surfactant concentration from iSAFT.
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Figure 4.7 : Surface tension isotherm. The top panel reprinted with permission from
ref [9]. Copyright 1999 American Chemical Society. The bottom panel is reprinted
with permission from ref [10]. Copyright 2000 American Chemical Society.
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Figure 4.8 : Structure of swollen micelle formed by H5T4/octane/water at 25�C and
1bar.

micelle [119] in the same way as increasing the surfactant tail length reduces the

CMC.

b. Reverse swollen micelle

The shape of surfactant molecules determines the structure of surfactant aggre-

gates. When a surfactant molecule carries a large head and small tail, its conical

shape would favor the formation of micelle in water. However, if the molecule car-

ries a large tail and small head, the formation of micelle in water would not be that

favorable since it is di�cult for the molecules to fit. Instead of forming micelles in

water, formation of reverse micelles in oil may be more favorable. With this simple

idea, researchers[150, 152] proposed the surfactant packing parameter to describe the

favorable types of micelle to be formed by di↵erent surfactants.

By employing the iSAFT potential parameters listed in Table 4.1, reverse swollen
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Figure 4.9 : Comparison of the CMC values of surfactant/water systems and sur-
factant/octane/water systems. (a) The e↵ect of head size on the critical micelle
concentration. All surfactants have 4 tail segments. Squares are CMCs with oil
present and crosses are CMCs without oil. (b) The e↵ect of tail size on the critical
micelle concentration. All surfactants have 6 head segments. Squares are CMCs with
oil present and crosses are CMCs without oil.
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Table 4.3 : iSAFT parameters for surfactant that forms reverse micelle

m �(Å) "/kB (K) "assoc/kB K/�3

Head segments x 3.0 328.6 1247.3 0.004432

Tail segments y 3.6 294.05

micelle cannot be obtained since the shape of surfactant molecule described by those

parameters does not favor the reverse micelle formation. The shape of surfactant

molecule may be altered by changing conditions such as temperature[152], but the

study of temperature e↵ect is beyond the scope of this paper and will be considered

in the following papers. Instead of altering conditions, we simply choose values of

parameters more favorable to form a reverse micelle. The set of parameters are given

in Table 4.3.

From the table, we can see that the diameter of tail segments is increased and the

association energy between surfactant head and water is decreased. As a result, the

surfactant molecules have a larger tail and smaller head that favors the formation of

reverse micelle. Following the same procedure described above, the calculated reverse

swollen micelle structure is shown in Figure 4.10. When the system free energy is

minimized, it is predicted that water molecules accumulate in the center of the reverse

micelle. By altering the structure of surfactant, the structure of a micelle or reverse

micelle can be optimized for various applications.

4.4 Conclusion

In this work, iSAFT classical density functional theory is extended to study the ef-

fects of surfactant architecture on critical micelle concentration, aggregation number,
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Figure 4.10 : Structure of reverse micelle formed by H5T4/water/octane using the
parameters listed in Table 4.3.

and interfacial tension. The model has been shown to describe micelle formation

and interfacial properties of surfactants in qualitative agreement with experimental

results. Additionally, the formation of swollen micelle and reverse swollen micelle

are also described by this model and the phase transition from oil-in-water emulsion

to water-in-oil emulsion can be captured successfully. To our knowledge, this is the

first time classical density functional theory , particularly with explicit hydration of

the head group, has been applied to such systems. In the future, investigations on

e↵ects of external conditions such as temperature and pressure on the structure of the

micelle and formation of microemulsion will be made. The ultimate goal is to apply

iSAFT in the molecular design of surfactant formations for enhanced oil recovery and

other applications.
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Chapter 5

Simulation Studies on the Role of Lauryl Betaine
in Modulating the Stability of AOS

Surfactant-Stabilized Foams

5.1 Introduction

Gases such as CO
2

, N
2

, air, and hydrocarbon gases (mainly methane) are typically

injected into oil reservoirs to displace oil to enhance its recovery [153, 154]. However,

since the gas phase has low density and low viscosity relative to the oil that it intends

to displace, the gas phase can finger through or break through to the top of the

reservoir resulting in poor sweep e�ciency. Foams are used to counteract this problem.

A foam is a colloidal system consisting of a dispersed gas phase and a continuous

liquid phase, which is thermodynamically unstable relative to the parent liquid and

gas phases. By virtue of having a higher viscosity, this two phase system o↵ers

better mobility control in gas injection or gas flooding [54]. Thus by applying foam,

progression of injected media (gas) in reservoirs can be controlled, leading to the

elimination of gas breakthrough and the increase in sweep e�ciency [155], including

of oil from low permeability regions [60].

The stability of foam is important to its application in enhanced oil recovery. Oils,

especially the lighter components, can weaken foam. The stability of the foam in the

presence of emulsified oil depends on the stability of the asymmetric oil/water/gas

pseudo-emulsion film [156, 157, 158]. If the pseudo-emulsion film — a water film
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separating the gas phase and the oil drop — is stable, the oil drop cannot penetrate

the gas/water interface thereby ensuring the integrity of the film. (In this instance,

the disjoining pressure between the gas/water and oil/water interfaces exceeds the

capillary pressure due to the curvature of the air/water and oil/water interfaces[159,

154].) However, if the pseudo-emulsion film is unstable, oil enters the gas/water

interface weakening foam stability.

Surfactants can help stabilize foams. It has been found that certain surfactants

can generate stronger foam than others. Alpha olefin sulfonate (AOS 14-16) is com-

monly recognized as a good foamer, where the number (14 to 16) indicates the number

of carbon atoms in the surfactant tail moiety (this nomenclature will be carried here-

after). In contrast, the NI blend (4:1 blend of Neodol 67-7PO sulfate and internal

olefin sulfonate (IOS 15-18)) does not generate a strong foam. However, mixing lauryl

betaine (LB) with the NI blend can generate foam that is even more stable than the

one generated by AOS itself [160]. Thus lauryl betaine, a foam booster [161], can

help stabilize foam even in the presence of oil[160]. It has been speculated that the

zwitterionic lauryl betaine helps screen the charge carried by the ionic surfactant at

the interface inducing closer packing of surfactants. The closer packing is thought to

lead to a higher charge density and hence a greater electrostatic repulsion between the

interfaces comprising the pseudo-emulsion film. The enhanced electrostatic repulsion

is expected to increase the disjoining pressure between the two interfaces preventing

film coalescence[162]. The close packing surfactant monolayer has also been shown

to have higher surface shear viscosity, which slows down the drainage of liquid from

the film[163]. However, a clear molecular scale analysis of the foam enhancement by

LB is as yet unavailable. But an understanding of the molecular basis of the syn-

ergistic action of surfactant blends has the potential to lead to rationally designed
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surfactant blends for use in foam enhanced oil recovery. Our e↵ort is motivated by

this perspective.

The oil/water interface is a building block of the pseudo-emulsion film. Although

direct simulation of the rupture process of the pseudo-emulsion film seems to be

straightforward to perform, it would be too computationally expensive in current

stage considering the thickness of the film and the time scale(nanosecond) simulated.

Hence to better understand the role of the zwitterionic LB in boosting foam we

seek molecular scale insights into the synergistic behavior of AOS 14-16 and LB

in modulating the behavior of octane/water interface, where octane serves as our

model hydrocarbon phase. We use molecular dynamics simulations to investigate the

behavior of various mixtures of AOS and LB. We find that for some compositions of

LB, the tighter packing of surfactants is indeed encouraged, as has been suggested

on the basis of experiments. We elucidate the molecular basis of this tighter packing

and its consequence for the enhancement in the surface dilatational modulus of the

octane/water interface, a key measure of film stability.

The rest of this chapter is organized as follows. In the following section we present

the molecular dynamics methods we used. In Section III, we present the results and

discussion, and in Section IV we present our conclusions.

5.2 Molecular dynamics simulations

The structures of lauryl betaine (LB), alpha olefin sulfonate 14 (AOS-14), and octane

were prepared using the xleap module of AMBER[44]. The molecular structures of

LB and AOS-14 are shown in Fig. 5.1 with the partial charges of head group atoms

labeled. These initial structures were optimized at the HF/6-31G* level of theory

using Gaussian 09[164]. The RESP charges for LB, AOS-14, and octane were derived
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Figure 5.1 : Schematic of the head-group of (a) lauryl betaine (LB) and (b) alpha
olefin sulfonate 14 (AOS-14). LB is zwitterionic, while AOS-14 is anionic. Lauryl
betaine has an alkyl chain length comprising 12 carbons, while AOS-14 has an olefinic
chain comprising 14 carbon atoms.

based on these geometry optimized structures using the R.E.D.-III.5 tool [165]. Force

field parameters were assigned using generalized AMBER force field[166, 49] with

the antechamber of AMBER. Water was modeled using the TIP4P-2005 model [167].

Molecular simulations were performed using the GROMACS [101] 4.6.5 simulation

package.

All simulations were performed in the isothemal-isobaric (NpT ) ensemble at a

temperature of 300 K and pressure of 1 bar. The temperature is controlled via a mod-

ified Berendsen thermostat [168] and the pressure is controlled using the Parrinello-

Rahman[169] barostat. We allow for a semi-isotropic pressure coupling so that the

x and y dimensions of the simulation box could alter independently from the z di-

mension. This pressure coupling scheme has been widely used in previous studies of

tensionless monolayer/bilayer [170, 171, 172]; here we assume the LB/AOS-14 mono-

layer is tensionless based on the fact that the interfacial tension measured is close

to zero for this LB/AOS system[173]. Allowing for semi-isotropic fluctuations of the

cell volume also greatly reduces the computational e↵ort to study the monolayer

[174]. We monitor the convergence of the x- and y-dimensions of the box in the pre-
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equilibriation conducted over 40 ns. After the lateral dimensions are reliably stable,

we perform a production run for 10 ns.

We use the leap-frog algorithm [175] with a 2 fs time step to integrate the equations

of motion. The SETTLE algorithm [176] is applied to water molecules and other

bonds in the system are constrained by LINCS algorithm [177]. Periodic boundary

conditions are applied in all directions. Electrostatic interactions are described using

the particle mesh Ewald technique with a real-space cut-o↵ distance of 1.4 nm. The

same distance was used to cut-o↵ van der Waals interactions.

It is not feasible to study the spontaneous self-assembly of the surfactants at an

octane/water interface. So all simulations were started from preassembled configu-

rations with the water phase in the center of the simulation cell, sandwiched by two

octane slabs, and surfactants located at the octane/water interface. The surfactants

were placed randomly at the interface. The counterion Na+ is placed randomly in

the water phase. The initial box dimension is 10 nm ⇥ 10 nm ⇥ 11 nm. The initial

thickness of the water phase is 6 nm. The Packmol [178, 179] program was used to

preassemble the simulation cells. Seven (7) simulations with di↵erent LB to AOS-14

ratios covering the whole range of composition were considered as indicated in Table

5.1. The di↵erence in the number of water molecules will not a↵ect the result since

only the oil/water interface is of an interest and the transport of surfactants from the

interface to the bulk region is limited due to the short time scale(ns) in molecular

dynamics simulation.

5.3 Results and discussion

We first discuss the role of LB in modulating the structural properties of the mono-

layer. Subsequently, we discuss the energetics, particularly the role of LB in modu-
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Table 5.1 : Compositions of the various systems studied in this work. The number of
molecules in each system is noted in the columns.

System AOS-14 LB Na+ octane wate

1 400 0 400 1900 13944

2 360 40 360 1900 16087

3 280 120 280 1900 13853

4 200 200 200 1900 13777

5 120 280 120 1900 15723

6 40 360 40 1900 13549

7 0 400 0 1800 13463

lating monolayer elasticity.

5.3.1 Area per molecule

The interfacial area per molecule has been shown to correlate with the surface shear

viscosity, with a smaller area per molecule correlating with a maximum in the surface

shear viscosity and a minimum in drainage of the film in a foam [163]. Since calculat-

ing shear viscosity directly from simulations is a daunting computational exercise, we

instead examine the behavior of the average area per molecule and rely on the corre-

lation of the surface shear viscosity with area per molecule to guide our investigation

of the present system. To this end, we calculate the area of the simulation cell in the

x� y plane and, by neglecting the minor buckling of the interface, equate this quan-

tity to the interfacial area occupied by the surfactant. The buckling of the interface

is very minor to the system containing AOS and is mainly introduced by the dipole

moment carried by LB heads making the alignment of LB molecules in the interface
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di�cult. (The snapshots of the simulation boxes are provided in the supplementary

material(Appendix B).) On this basis we calculate the area per molecule (Fig. 5.2).
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Figure 5.2 : Area per molecule averaged over 10 ns. The standard error of the mean
is negligible compared to the size of the symbol.

If LB and AOS formed an ideal solution, the area per molecule would depend

linearly on the LB mole fraction. However, this is not the case. Instead the trend is

non-monotonic with a minimum around 30% LB mole fraction. The interface with

pure AOS-14 has an area per molecule of approximately 32 Å2. As the mole fraction

of LB in the surfactant monolayer increases, the area per molecule stays roughly

constant until the mole fraction of LB reaches 10%. Then it reaches a minimum at

30% LB mole fraction. Between 30% LB and 70% LB there is a modest increase in

area, with a more pronounced increase in area after 70% LB. For pure LB, the area

per molecule is 38 Å2. (The interfacial area is higher for pure LB compared to AOS,

partly due to the larger size of the head group (Fig. 5.1).) The overall trend agrees

with area estimated using the experimentally measured surface tension isotherm and

its interpretation within regular solution theory[173]. Based on the experimentally
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identified correlation between area per molecule and surface shear viscosity, we expect

the interface with 30% LB should show a high shear viscosity and also produce a foam

that is more stable than that obtained using pure AOS alone.

5.3.2 Surface distribution of LB in the monolayer

Figure 5.3 compares the pure component pair correlation gN�N (for LB) and gS�S (for

AOS) with the N-S correlation function gN�S for an LB composition of 30%. (NB: the
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Figure 5.3 : Pair correlation functions for various surfactant systems. S-N correlation
(blue curve) in 3:7 mixture of LB and AOS; N-N correlation for neat LB (green), and
S-S correlation for neat AOS (red).The curves are o↵set for clarity.

pair correlation functions are measured in the x�y plane. Further, for pure LB, gN�N

does not equal to 0 at r = 0 due to slight buckling of the interface.) The correlation

functions reveal that at the composition leading to a minimum area, the first peak of

gN�S occurs at a smaller separation (relative to the pure component correlations) and

has a substantially higher peak. This enhanced local order is suggestive of favorable

interactions between the anionic surfactant (AOS) and the foam booster (LB).
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The z-dependent density distribution ⇢(z) (Fig. 5.4) provides additional insights

into the aforementioned favorable interaction. We find that the N (from LB) and

S (from AOS) atoms are nearly in the same plane, whereas the carboxylate group

(from LB) juts into the aqueous phase. This configuration should maximize the

electrostatic interaction between the head groups and also aid in the solvation of the
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Figure 5.4 : Normalized density profile for nitrogen (green), sulfur (red), and car-
boxylate carbon (blue) in 3:7 mixture of LB and AOS in a direction perpendicular to
the interface. z = 0 nm defines the center of the octane slab and z = 8.8 nm approx-
imately corresponds to the center of the water slab. The density distribution of each
component is normalized by

R
⇢(z)dz, where the integration is across the oil/water

interface.

carboxylate. On the other hand, a configuration where C (from LB) and S (from AOS)

are in the same plane, as would be needed to maximize packing of the alkyl chains, is

clearly disfavored due to the electrostatic repulsion between C and S and the expected

diminished hydration of the carboxylate group. Our simulation results confirm the

structural configuration suggested by Wydro et al. [180], but there is a caveat. In

the analysis by Wydro et al., guided by the conventional assignment of formal +1 or

�1 charges to charge sites on surfactant head-groups, one LB pairs with one anionic
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Table 5.2 : Local composition versus overall composition of LB in the monolayer. The
local composition is given by LBlocal = (NLB + 1)/(NLB +NAOS�14

+ 1), where N is
the number of particles (either LB or AOS) within the first shell of the distinguished
LB molecule. (These N values are standardly obtained from the pair correlation.)

LBoverall% NAOS NLB LBlocal

10 3.68 0.11 23.22

30 3.42 0.42 29.36

50 2.33 0.96 45.73

70 1.36 1.73 66.76

90 0.38 2.08 89.06

surfactant. However, with head-groups with a partial charge distribution, as is the

case in our simulation models, this 1:1 pairing is not expected. Indeed, analysis of

local composition around an LB molecule versus the overall composition (Table 5.2)

shows that in all the systems except the one with 10% LB, the local composition is

nearly the same as the overall composition, indicating that the system is well-mixed

and no 1(LB):1(AOS) pair pattern exists. (The discrepancy is high for the 10% LB

system because of sampling limitations associated with the smaller total number of

LB molecules.)

5.3.3 Role of LB in the structure of surfactant monolayer

The foam booster LB also impacts the structure of surfactant monolayer in a con-

centration dependent fashion. To study this we calculate the tilting angle of the LB

head and the order parameter of surfactant tails.

The orientation of the head of LB is investigated by measuring the angle between

the carbon-carbon vector in the -N-C-CO
2

head-group of LB and the monolayer



86

normal z axis. The results are shown in Fig. 5.5. We find that the head group of LB
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Figure 5.5 : Angle between C-C vector in the LB head-group (-N-C-CO
2

) and the
monolayer normal. The standard error of the mean is negligible on the scale of the
graph.

is tilted relative to the monolayer normal and the tilt angle increases with increasing

LB concentration. After about 70% LB, the tilt angle increases faster and the head

of LB becomes nearly parallel to the monolayer.

The re-orientation of the LB head-group can be modulated by the anionic sur-

factant AOS-14. In essence, the favorable interaction between the S (AOS) and N

(LB) surfactant atoms and the hydration of the carboxylate group of LB can inhibit

the tendency of pure LB head-groups to become nearly parallel to the monolayer.

This change of orientation alters the e↵ective head group size and thus the area per

molecule (Fig. 5.2). Thus despite the fact that the LB head-group (in pure LB)

occupies a larger area than the head group in pure AOS, in the mixture, the e↵ective

head-group size is lower because the flexibility the head-group is suppressed by favor-

able interactions. Of course, when the proportion of LB is high (� 70%), favorable
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AOS-LB interactions are not su�cient in constraining the head-group orientation

leading to an increase in area per head group (Fig. 5.2).

The ordering of the surfactant tails is also a↵ected by the interaction between

head-groups. To explicate this, we define an order parameter

S =
3 hcos2✓i � 1

2
, (5.1)

where ✓ is the angle between the vector of interest and the monolayer normal (z axis)

and h. . .i indicates ensemble average. For the surfactant tail, the order parameter

is defined per carbon site (i), where ✓ is angle between the normal and the vector

connecting the two adjacent carbon atoms i� 1 and i+1. Clearly, S ranges from �1

2

to 1. When S = �1

2

, the vector is parallel to the monolayer/interface, whereas when

S = 1, the vector is normal to the monolayer/interface. When S = 0, the vector of

interest does not have preferential orientation.

In Fig. 5.6 we present the order parameter averaged over all carbon atoms in

surfactant tails. The lower bound is the order parameter of the carbon atom that

is next to the terminal one. Terminal carbon atoms have smaller order parameter

since they are less confined. Several interesting points can be observed. First, a

surfactant monolayer consisting of pure AOS-14 is slightly more ordered than the

monolayer formed by pure LB. This result is consistent with the area per molecule,

pair correlation function, and flexibility of the LB head-group. When the LB head-

group lays flat on the interface (C-C bond vector in the head is nearly parallel to

the interface), the alkyl tail LB has more freedom and hence is less ordered than

AOS-14. Second, the averaged order parameter remains constant as LB mole fraction

increases, decreasing only after the LB mole fraction increases beyond 70%, when

there fewer AOS molecules to bind with the LB molecules. What this shows is that,

although the LB molecule has a larger head group which could decrease the ordering
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Figure 5.6 : Average order parameters for surfactant hydrocarbon chains of LB (left
panel) and AOS-14 (right panel).

of surfactant tails, this negative e↵ect is o↵set by the favorable interaction between

LB and AOS-14.

Accepting the correlation between surface shear viscosity, packing of surfactant

molecules at the interface, and foam stability [163], the above observations suggest

why LB alone is not a good foamer: LB alone cannot form a closed packed monolayer

needed to increase the shear viscosity. However in surfactant blends, the synergis-

tic e↵ects discussed above can lead to better packing than either pure component

surfactant. This is why LB is a foam booster but not a good foamer[181].
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5.3.4 Binding energy of LB and surface dilatational modulus

As a final piece in confirming the structural analysis above, we calculated the binding

energy of one distinguished LB molecule with the rest of surfactants in the monolayer.

The binding energy was calculated by summing up the potential energy of interactions

between a distinguished LB and the rest of the surfactant molecules in the same

monolayer. This was conducted over all the LB molecules in the system and an

average value was calculated over time and number of LB molecules. Fig. 5.7 shows

that the binding energy of the distinguished LB decreases as the proportion of LB

increases in the monolayer till it reaches a minimum at about 30% composition.

Subsequently the binding energy increases, indicating that favorable interaction of

the LB with the rest of the surfactants is maximized at about 30% composition.

�100

�90

�80

�70

�60

�50

�40

�30

P
ot
en
ti
al

E
n
er
gy

(k
ca
l/
m
ol
)

0.0 0.2 0.4 0.6 0.8 1.0
LB mole fraction in the monolayer

Figure 5.7 : Binding energy of a distinguished LB with the rest of surfactants in the
monolayer. The statistical uncertainty is smaller than the size of the symbols.

All of the above analysis suggests that the interface will most resist expansion,

a precursor for breakage of the pseudo-emulsion film, at an LB composition of 30%.
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We quantify this property using the surface dilatational modulus defined as [182]

" =
d�

d lnA
(5.2)

where " denotes surface dilatational modulus, � is the interfacial tension, and A is

the surface area. The surface dilatational modulus is related to the Gibbs Elasticity

(E = 2d�
d lnA) that describes the stability of a thin film. However, due to the existence

of interaction between the two interfaces, that is to say there is a finite disjoining

pressure, the Gibbs elasticity cannot be obtained simply by multiplying surface di-

latational modulus by a factor of two.

Physically the surface dilatational modulus describes the capacity of the interface

to increase its interfacial tension upon an increase of surface area. Greater the di-

latational modulus, greater is the work required to stretch and break the interface.

Thus " is a direct measure of the stability of a monolayer to resist the perturbation.

Additionally, it has been shown experimentally that surface elasticity is important

to the foam stability[183]. We calculated the surface dilatational modulus using

Eq.(5.2) together with a 7% areal perturbation[184] applied to each monolayer in

our simulation cell. The interfacial tension of each perturbed surfactant monolayer

was collected from ⇡ 6ns production runs using the pressure tensor method[185] in-

tegrated in GROMACS and the dilatational modulus was calculated by numerical

di↵erentiation.

The calculated dilatational modulus is shown in Fig. 5.8. The surface dilatational

modulus of AOS-14 has been measured experimentally at the gas/water interface by

Huang et al.[186]. The measured dilatational modulus of AOS-14 is around 6 mN/m

while that of AOS-16 is around 40 mN/m. Our results of AOS-14 at the oil/water

interface is 39 mN/m which is within the same range of values. (A strict comparison is

limited by the di↵erent interfaces considered and also by limitations in the simulation
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MD that cannot capture the exchange of surfactant molecules between bulk solution

and interface.) The result shows that the surfactant monolayer consisting of 30%

LB has the greatest surface dilatational modulus, indicating the highest resistance

to external perturbation. In contrast, the monolayer consisting of pure LB has the

smallest modulus, indicating the lowest stability. So LB by itself is not a good foamer

in this circumstance. The trend of surface dilatational modulus is in good accord

with our analysis of the area per molecule (Fig. 5.2) and the binding energy of LB

(Fig. 5.7). Indeed, as the film is expanded by an external perturbation, the average

inter-surfactant distance will be increased thereby increasing (making less favorable)

the binding energy between the surfactant molecules. But as the binding energy

analysis shows, this will be most unfavorable for the interface with 30% LB.

0

50

100

150

D
il
at
at
io
n
al

m
od

u
lu
s
(m

N
/m

)

0.0 0.2 0.4 0.6 0.8 1.0
LB mole fraction in the monolayer

Figure 5.8 : Surface Dilatational Modulus obtained using Eq. 5.2. The surface tension
in Eq. 5.2 was calculated using the pressure tensor for systems di↵ering in area by
7% from the equilibrium value.
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5.4 Conclusion

We investigated the surfactant monolayer stabilized by the anionic surfactant AOS-14

and the foam booster lauryl betaine (LB) at an octane/water interface using molecular

dynamics simulation. Favorable interaction between head-groups and the flexibility

of the LB head-group are found to be important in determining the synergistic in-

teraction between the surfactants. The head-group of LB is flexible enough that it

tends to orient parallel to the oil/water interface, in turn leading to poor packing and

a higher area per head-group (relative to the anionic surfactant AOS). On the basis

of the experimentally observed correlation between surface shear viscosity, packing

of surfactant molecules at the interface, and foam stability, LB alone is not expected

to be a good foamer. However, in the AOS-LB blend, the foam booster (LB) me-

diates and enhances the e↵ective interaction between the AOS molecules leading to

an overall closer packing than either pure surfactant; this e↵ect is enhanced for a

30% composition of LB in the monolayer. For this mixture, the binding energy of a

distinguished LB in the monolayer is the lowest and the dilatational modulus of the

monolayer is the highest, indicating stability of the interface to distortion.

In this work we have not investigated the impact of specific salt type and com-

position on foaming. Additionally, the branching of surfactants may also a↵ect their

interfacial properties[187, 188]. These aspects are undoubtedly important in design-

ing surfactant blends to stabilize foam. Investigations along these lines are part of

our on-going work.
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Chapter 6

Molecular Dynamics Simulation Study on the
Adsorption of Naphthenic Acids on Calcite (101̄4)

Surface

6.1 Introduction

Wettability is defined as the tendency of one fluid to spread on, or adhere to, a

solid surface in the presence of other immiscible fluids and it refers to the interaction

between fluid and solid phases. The wettability of reservoir rock is an important

factor a↵ecting the e�ciency of water-flooding processes. An oil-wet rock matrix

will prevent water from spontaneous imbibition[189] and the injected fluid(water)

must overcome the barrier introduced by capillarity to displace the original oil in

place(OOIP). Hence, the oil recovery from oil-wet reservoirs can generally be very

poor[190] by water-flooding processes. If the wettability of the reservoir rock is altered

from oil-wet to water-wet, the injected fluid(water) can spontaneously invade the

rock matrix, resulting in more oil being displaced[191] and improved oil recovery.

It was recognized that the wettability of rock surface can be greatly modified by

the adsorbents such as organic acids present in crude oil and later adsorbed on the

surface[192]. Once adsorbed, the hydrophobic tails of the organic acids can behave

like the anchors for the adsorption of oil molecules onto the surface[193], showing a

change in wettability. To better understand the wettability of reservoir rocks and

develop new techniques for improving oil recovery, studying the mechanism of the
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adsorption process of the acids onto minerals can be an important contribution.

The wettability of carbonates attract lots of attention due to the fact that about

50% of world discovered oil reserves are in carbonates[194] and carbonate reservoirs

dominate the Middle-East petroleum fields. Although carbonate surface is originally

hydrophilic or water-wet, around 80% carbonate reservoirs are preferentially oil-wet

under reservoir conditions, making water flooding less e↵ective. The reason why car-

bonate reservoirs are oil-wet or mixed-wet can be largely attributed to the adsorption

of carboxylates from the crude oil to the surfaces[192, 190, 195]. Considerable e↵ort

has been made on developing new methods to mediate the adsorbed acids and alter

the wettability of carbonate surfaces. It was found that cationic surfactants such as

R-N+(CH
3

)
3

are able to desorb the adsorbed carboxylates due to the strong electro-

static a�nity between the adsorbed carboxylates and cationic surfactants and the

formation of cat-anionic surfactant pairs[195]. It was also proposed that potential de-

termining ions such as Ca2+, Mg2+, and SO2�
4

can help desorb carboxylates[196, 197]

from the surface. Additionally, Seethepalli et al.[190] showed that anionic surfactants

can be e↵ective in changing the wettability of the calcite surface from an oil-wet state

to an intermediate or water-wet state. Not related to the desorption of carboxylates,

this wettability alteration process may be explained by the adsorption of anionic sur-

factants onto the adsorbed layer of carboxylates through their hydrophobic tails and

hydrophobic interactions, exposing their hydrophilic heads and making the surface

hydrophilic[191]. It was also mentioned that adding potential determining ions such

as carbonates dramatically decreases the loss of anionic surfactants. Nonetheless, a

molecular-level understanding of the interaction between carboxylates and carbonate

surfaces is still lacking in the literature and will be the subject of this chapter.

To investigate the interaction between carboxylates and carbonate surfaces, we
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opt to calculate the free energy of adsorption of deprotonated naphthenic acids on

calcite (101̄4) surface using molecular dynamics simulation. It was found that the

adsorption free energy can be greatly a↵ected by the hydrophobic moiety of the

acids: longer tail naphthenates adsorb more strongly. Furthermore, the free energy

of adsorption exhibits an inverse-temperature behavior: an increase in temperature

enhances the free energy of adsorption, a signature of hydrophobic interactions[198].

This agrees with the experimental observation made by Young et al.[199], who showed

that the adsorption of carboxylic acids on calcite surfaces is an endothermic process

and increases with temperature at low carboxylic acid concentration. Based on these

two findings, it can be inferred that hydrophobic tails can be important in the ad-

sorption of acids onto calcite (101̄4) surface. Hydrophobic interactions a↵ecting the

adsorption of amphiphilic molecules onto charged surface is not a new finding: it was

shown experimentally by Hu et al.[200] that this interaction is very important to the

adsorption of dye molecules on resins. By decoupling the free energy of adsorption

to entropic and enthalpic contributions, it was found that the adsorption process is

driven by entropy, another signature of hydrophobic e↵ect, which also confirms Young

et al.’s speculation[199]. The free energy of adsorption is further compared against

that of a potential determining ion carbonate. We showed that, it is energetically

favorable for the carbonate ion to displace naphthenic acids with shorter tails from

the (101̄4) surface. However, it can be inferred that the displacement will be less

favorable when the acids bear bulkier tails.

6.2 Model and Methods

Here, the calcite surface being studied is the (101̄4) surface. As the most abundant

calcite surface on Earth, the (101̄4) surface has been shown to be the most stable
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among all calcite facets theoretically and experimentally[201, 202]. To model the

calcite crystal and the (101̄4) surface, the force field developed by Raiteri et al.[203]

is utilized. In this force field, the intramolecular interactions between atoms in the

carbonate group are ignored, resulting in a rigid molecule force-field. Based on the

detailed geometric information of the unit cell in the work by Stockelmann et al.[204],

the calcite crystal was constructed. The crystal made of 6⇥6⇥6 unit cells(432 CaCO
3

)

in x � y � z directions was put in the center of the simulation cell covered by two

layers of water modeled with TIP4P2005 water model[167]. The thickness of the

mineral slab is approximately 2 nm and that of each water slab is around 4 nm. To

avoid unphysical water density, two vapor slabs(2 nm thick each) are placed above

the two layers of water respectively. The final dimensions of the cubic simulation cell

are 4.8576⇥ 2.994⇥ 14 nm in x, y, and z directions (Fig. 6.2).

The GROMOS 54A7 force field[205] is used to describe the rest of interactions

between di↵erent species in the system. The molecular structure of the deproto-

nated naphthenic acid (C
5

-C
9

-CO�
2

) was derived based on the average molecular

weight(248 g/mol) of the experimentally accessible naphthenic acids, where C
5

rep-

resents cyclopentyl group. The schematic of the molecular structure of the acid

C
5

-C
9

-CO�
2

is shown in Figure 6.1. The topology of the molecule was generated us-

ing PRODRG server[206]. To study the e↵ects of tail length on the free energy of

adsorption, an acid with shorter tail length(C
5

-C
2

-CO�
2

) was also constructed in the

same fashion.

Molecular dynamics simulations were performed in GROMACS/4.6.5 simulation

package[101] in the NV T (fixed number of particles N , volume V and temperature T )

ensemble. The temperature was controlled via a modified Berendsen thermostat[168]

scheme. We used the leap-frog algorithm[175] with a 2 fs time step to integrate the
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Figure 6.1 : Schematic of C
5

-C
9

-CO�
2

where C
5

represents cyclopentyl.

Figure 6.2 : Illustration of the simulation box. The calcite crystal(in the middle)
is sandwiched by two water phases(red dots) which is in coexistence with their va-
por phases(blank space). The green lines in water phase represents deprotonated
naphthenic acid molecules.

equations of motion. The SETTLE algorithm[176] was applied to water molecule

and other bonds in the system were constrained by LINCS algorithm[177]. Periodic

boundary conditions were applied in all directions and the particle mesh Ewald tech-

nique was used for the electrostatic interactions. A cut-o↵ distance of 1.4 nm was

used for the real-space electrostatics and van der Waals interaction.

Simulating the adsorption process of molecules from the water phase to calcite sur-

face is time-consuming and computationally expensive in molecular dynamics simula-
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tion. To accelerate this adsorption process and calculate the free energy of adsorption,

the steered molecular dynamics simulation(SMD) technique is utilized[207]. An ex-

ternal force is assigned to the carboxylic group of the molecule to pull it toward the

surface. After sampling the configurations of the molecule at di↵erent distance to

the surface, the weighted histogram analysis method(WHAM)[208] in the g wham

module [209] is used to calculate the free energy of adsorption. This methodology

has been applied by Lemkul et al.[210] to study the stability of Alzheimer’s Amyloid

Protofibrils and by Chun et al.[192] to study the desorption of a carboxylic acid from

an oil/calcite interface.

To decouple the entropic and enthalpic contributions to the free energy of ad-

sorption, we rely on the potential of mean force or free energy profiles obtained at

di↵erent temperatures. The entropy S can be obtained by[211],

�S(z) =
�A(z, T + �T )� �A(z, T )

�T
(6.1)

where A is the Helmholtz free energy obtained from umbrella sampling, z is the

reaction coordinate defined as the normal distance between the center of mass(COM)

of carboxylic group of the acid and the calcite surface, and T is absolute temperature.

The enthalpic contribution to the free energy, �H(z), can be calculated in NV T

ensemble using the following equation:

�H(z) = �U(z) = �A(z) + T�S(z). (6.2)

6.3 Results and Discussion

6.3.1 Water Structure at the Calcite/Water Interface

Recognizing that the adsorption of carboxylates can be a↵ected by the solvent en-

vironment, the structure of water close to the calcite surface is of an interest. The
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Figure 6.3 : Number density distribution of calciums in calcite and oxygens in
TIP4P/2005 water model.

structure of the liquid water in contact with the calcite surface has been studied both

computationally [212, 213, 214, 203] and experimentally[215]. At the calcite/water

interface, water molecules are highly structured due to strong electrostatic interaction

between water molecules and the calcite surface and this is illustrated in Figure 6.3

in which the number density of oxygens of water molecules is plotted against z axis

that is normal to the calcite surface. The origin of coordinate is chosen to be the

average position of calciums in the outermost layer of the calcite (101̄4) surface. This

definition of the position of the calcite surface will be carried hereafter. We can see

that four(4) layers of water molecules are present within 8 Å to the surface. After

8 Å, the water density converges to its bulk value.

Due to the strong interaction between water and calcite, it can be anticipated

that water molecules are confined in certain orientations close to the surface. The

orientations of water molecules can be illustrated by examining the angle between

the dipoles of water molecules and z axis that is normal to the surface. The averaged



100

�1
�0.8
�0.6
�0.4
�0.2

0
0.2
0.4
0.6
0.8
1

W
at
er

D
ip
ol
e
O
ri
en
ta
ti
on

(c
os

✓)

�0.2 0 0.2 0.4 0.6 0.8 1 1.2
z(nm)

Figure 6.4 : Orientation of water molecules. x axis is the distance of oxygen atoms
from the surface. y axis represents the cosine values of the angles between dipoles of
water molecules and surface normal averaged over molecules and time.

cosine values of the angles as a function of distance from the surface are plotted in

Figure 6.4. Clearly, water molecules are highly ordered. We can see that, about

1� 3 Å from the surface, the cosine value is positive, meaning that the first layer of

water molecules(defined by the position of oxygens) are at acute angle to the normal

of the calcite surface with oxygen atoms binding to the calcium atoms of the surface.

When z is in the range from 3 Å to 4 Å, the values are negative, indicating that the

second layer of water molecules are at obtuse angle to the normal of the surface with

hydrogen atoms of water hydrogen bonding to the surface oxygen atoms. As z further

increases, the averaged cosine value converges to 0, indicating no specific ordering of

water dipoles in the homogeneous bulk region. The structure of TIP4P/2005 water

close to the calcite surface obtained from this study is very similar to that of other

water models studied by Kerisit et al.[213] and Raiteri et al. [203].

Due to the structuring of water molecules at the surface, electrical double layers

formed by oxygens(negatively charged) and hydrogens(positively charged) of water



101

�100

0

100

200

300

C
h
ar
ge

D
en
si
ty

(
e

n
m

3
)

�0.2 0 0.2 0.4 0.6 0.8 1 1.2
z(nm)

Calcite
Water

Figure 6.5 : Charge distribution of calcite/water interface

molecules are anticipated. To unveil this information, the charge density distribution

is calculated and plotted in Figure 6.5. Well-defined peaks are observed and they

correspond well with the density profile of oxygens of water molecules. At closest

contact(around 1.5 Å), the water layer has a positive charge density, due to the ag-

gregation of hydrogens induced by the hydrogen bonding between surface oxygens

in the carbonate groups and hydrogens of water molecules. This hydrogen bonding

network also contributes to the orientation of the second layer of water molecules

(defined by the positions of oxygens) as mentioned before. As z increases, the charge

density becomes negative due to the large number of oxygen atoms around 2 Å shown

in Figure 6.3. This is due to strong electrostatic attraction between water oxygens

and calcite calciums. Further apart from the surface, charge density becomes positive

again, and so on and so forth. This electrical double layer structure is only promi-

nent within 8 Å to the surface. After this critical distance, water regains its bulk

homogeneous structure and the charge density converges to 0.
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Due to the existence of the structured water layer and the electrical double layer

induced by the calcite surface, charged species can adsorb onto the surface. This

agrees with our conventional understanding. It can be anticipated that the adsorption

of charged species on the calcite surface is greatly a↵ected by the presence of water

molecules, making the explicit consideration of water molecules important, which can

be too computationally expensive for quantum calculations.

6.3.2 Adsorption of Deprotonated Naphthenic Acids on Calcite

As introduced before, organics from the crude can adsorb onto reservoir rock surfaces

and alter the wettability. This has been regarded as the origin of calcite surface being

preferentially oil-wet under reservoir conditions. The adsorption of acids is generally

recognized to be governed by the electrostatic interaction between the charged surface

and oppositely charged acid molecules but little attention was paid to the hydrophobic

tails. However, the acid tails can also be important in the adsorption process. It was

shown by Hu et al.[200] that the tail is very important to the adsorption of dye

molecules on charged resins. To unveil the contribution of hydrophobic tails, we

investigated the free energy or potential of mean force of adsorption of three di↵erent

acids with various tail length: one hypothetic acid without tail, one with C
2

-C
5

tail and one with C
9

-C
5

tail. The one with no tail is represented by an imaginary

monovalent carbonate ion. The topology of the imaginary monovalent carbonate ion

is the same as the one in calcite crystal with the partial charges scaled by 0.5.

Each free energy profile as a function of distance to the surface was calculated

by umbrella sampling technique and weighted histogram analysis method(WHAM).

A series of MD simulations, each for 5 ns in production run, with the center of

mass(COM) of the carboxylic group constrained at various distance from the sur-
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face(whose position is defined by the position of calciums at outermost layer) were

conducted. To generate the initial configurations for the 5 ns sampling simulations,

an independent steered molecular dynamics simulation was conducted beforehand.

In this process, the carboxylic group was initially placed 2 nm from the surface and

pulled toward the surface with the configurations of molecules saved at 0.02 nm inter-

vals, which were used as the starting configurations for the umbrella sampling. The

final free energy profiles are shown in Figure 6.6. Several interesting points can be

observed. First, the adsorption of acids is energetically favorable, which agrees with

our intuition and experimental observations. Second, two states of adsorption are

observed: the acid head group can be either in direct contact with the surface form-

ing inner sphere complex or in contact with the water layer adsorbed on the surface

forming outer sphere complex. We can see that the separation of the two energy wells

is 3 Å that equals the generally accepted diameter of water molecule. Hence, a single

layer of water molecules is attached on the surface when the outer sphere complex is

formed and stable. Third, the adsorption free energy is greatly a↵ected by the size of

the acid tails. The acid with longer tail has a larger adsorption energy and adsorbs

more strongly onto the surface. So the hydrophobic moiety of the acids does a↵ect

the adsorption and should not be overseen.

The third observation can be understood based on a simple argument. Since

the hydrocarbon chain cannot form hydrogen bonds with water molecules, longer

hydrocarbon tail results in lower solubility of the acid in water. Further, since the

water molecules at the surface are highly ordered, acid molecules displacing the water

molecules from the surface can be entropically favorable, due to the release of water

molecules from the interface (a low entropy state) to the bulk region (a high entropy

state). These two e↵ects contribute to the aggregation between the surface and
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(c) naphthenic acid with C9 � C5 tail

Figure 6.6 : Potential of mean force(PMF) of naphthenic acids with di↵erent tail
length at 300 K: a) no tail, b) C

2

� C
5

tail, c) C
9

� C
5

tail. The PMF is normalized
by kT , where k is the Boltzmann constant and T is absolute temperature. The gray
shades are the statistical error estimated by using Bayesian bootstrap method.
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the acid molecule. It is also implied that the calcite (101̄4) surface is relatively

less hydrophilic compared with water. We suspect that the reorientation of water

molecules at the surface contributes to a ‘hydrophobic’ surface as can be seen from

the extremely low density of water at 2.7 Å shown in Figure 6.3. As a result, the

similarity between the interaction between the calcite surface and the acid molecule

and the attractive hydrophobic interaction is not surprising.

6.3.3 E↵ect of Temperature on Adsorption at Low Acid Concentration

Another representing signature of the hydrophobic interaction is that it augments

with the increase in temperature. Indeed, the adsorption of carboxylic acids is a

function of temperature: it was observed experimentally the adsorption of oleic acids

on calcite increases as temperature rises[199] at low acid concentration. To investigate

the origin of this phenomenon, the potential of mean force of the acid with C
9

-C
5

tail

is calculated at elevated temperatures(310 K) and shown in Figure 6.7.

Similar to the potential of mean force at 300 K, there are two energy wells at the

same positions. It can be seen that, at elevated temperature, both of the inner sphere

complex and outer sphere complex become more energetically favorable. Based on

the free energy profiles, increasing temperature indeed enhances the adsorption at low

acid concentration, which agrees with the experimental finding and further confirms

the hydrophobic interaction between the acid molecule and the calcite surface.

6.3.4 Adsorption Driving Force

In the experimental work by Young et al.[199], this endothermic phenomenon is at-

tributed to the chemisorption and it was suspected that the appearance of ‘chemisorp-

tion’ is related to the entropy of water. But no direct evidence was provided. As men-
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Figure 6.7 : Potential of mean force of the C
5

� C
9

� COO� naphthenic acid at
310 K. The gray shades are the statistical error estimated by using Bayesian bootstrap
method.

tioned previously, the adsorption of an acid molecule may be entropically favorable

due to the release of highly constrained water molecules from the surface to the less

confined bulk environment. To test this speculation more rigorously, we decoupled the

free energy of adsorption to two contributions: entropy and enthalpy. The entropic

and enthalpic contributions to the free energy of adsorption of the acid molecule onto

the calcite surface at 300 K were obtained based on Eq. 6.1 and Eq. 6.2 and the free

energy profiles shown in Figure 6.6(c) and Figure 6.7. The results are shown in Figure

6.8.

We can see that the enthalpic contribution �H is positive, which disfavors the ad-

sorption. In the meanwhile, the entropic contribution �T�S is negative, which favors

the adsorption. So the adsorption process is indeed entropically driven, consolidating

the existence of hydrophobic interaction and Young et al.’s speculation[199].
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6.3.5 Free Energy of Adsorption of Carbonate Ion

It would be interesting to compare the free energy of adsorption between the naph-

thenic acids and carbonate ions. The free energy of adsorption of a carbonate ion

as a function of distance to the surface was calculated following the same procedure

described previously. The results are shown in Figure 6.9. Again, two energy wells

are present with the depth around �3 kcal/mol and �4 kcal/mol, respectively, which

are slightly greater than or equal to that of the naphthenic acid with the longest tail

studied in this work(Fig. 6.6(c)). So it will only be slightly energetically favorable

for the carbonate ion to displace the naphthenic acid with moderate tail size. So, one

would expect that carbonate ions may not be able to displace the naphthenic acids

with bulkier tails or asphaltene molecules from the calcite surface by itself. This ob-

servation in some sense agrees with the experimental observation, which shows that

divalent anion sulfates are not able to alter the wettability without the presence of

Mg2+ and Ca2+[196]. Further investigation is needed to unveil the mechanism of
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Figure 6.9 : Potnetial of mean force of the carbonate ion at 300 K. The gray shades
are the statistical error estimated by using Bayesian bootstrap method.

wettability alteration and the e↵ect of potential determining ions.

6.4 Conclusion

In this work, the adsorption free energy of deprotonated naphthenic acids on the cal-

cite (101̄4) surface is studied along with that of a potential determining ion carbonate.

It was shown that the adsorption of naphthenates is greatly a↵ected by the size of the

hydrophobic tails. The acid molecule that possesses longer tail adsorbs more strongly

onto the calcite surface compared to shorter tail ones. Additionally, the enhancing

e↵ect of temperature on the adsorption was observed by comparing the free energy

profiles, qualitatively agreeing with the experimental observation made by Young et

al.[199]. These two observations suggest that hydrophobic interaction exists between

deprotonated naphthenic acids and the calcite surface. The hydrophobic interaction

is suspected to be related to the entropy of adsorbed water molecules. It was shown

that the adsorption process is entropically driven based on the decoupled entropic
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and enthalpic contributions to the free energy of adsorption.

Furthermore, we showed that the adsorption of carbonate ions can only be slightly

more energetically favorable compared to the acids with moderate tail size. However,

since the size of the tail can greatly a↵ect the adsorption free energy, it can be an-

ticipated that the carbonate ion may not be able to displace adsorbed acid molecules

with bulkier tails.
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Chapter 7

Concluding Remarks

In this chapter, the thesis work will be summarized. Additionally, some future re-

search directions will be proposed.

7.1 Summary

In this thesis, molecular thermodynamic approaches such as iSAFT classical density

functional theory and molecular dynamics simulation approach have been used to

study the systems containing amphiphilic molecules or surfactants.

First, an iSAFT approach based on the forces acting through the interface and the

Method of Moments was developed to predict the e↵ect of surfactant architecture on

the type of microemulsions formed. The stress that describes the forces in the interfa-

cial region obtained from iSAFT was verified against molecular dynamics simulation

approach, and the dependence of the types of microemulsions on surfactant architec-

ture agrees qualitatively with experimental observation. Additionally, the e↵ect of

surfactant structure on the phase inversion temperature can also be captured. With

proper determination of surfactant parameters, this new approach will potentially

enable e�cient screening of surfactant formulation for enhanced oil recovery process.

Second, an extension of iSAFT to model the formation of spherical surfactant

aggregates(micelles) was presented. Compared with molecular simulation approach,

iSAFT approach models the true thermodynamic equilibrium state between micelles
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and surfactant monomers and provides an unified theoretical framework for describing

the properties of complex fluid in the bulk region and also in the interfacial region.

This new application of iSAFT DFT enables us to predict complete interfacial ten-

sion isotherms. Additionally, this approach can be used to study swollen micelles

and inverse swollen micelles that may enable us to gain better understanding of the

formation of a middle-phase microemulsion.

Third, we provided insight into the mechanism of lauryl betaine as foam booster.

Using molecular dynamics simulations, a system of LB (the foam booster) and alpha

olefin sulfonate (AOS-14), an anionic surfactant that is used as a foam stabilizer, was

studied. It was found that the foam booster functions by screening the interaction

between the anionic surfactant. Favorable interaction between foam booster and

anionic surfactants leads to a closer packing of the monolayer than possible with

just the pure anionic surfactant. It was also found that the closer packing is also

reflected in an elevated surface dilatational modulus, indicating that the better packed

monolayer will stabilize the foam. This work o↵ers insights that can be potentially

useful in rational design of surfactant blends for use in enhanced oil recovery.

In the end, the adsorption of naphthenic acids on calcite surface was studied by

molecular dynamics simulation and umbrella sampling technique. It was found that

both electrostatic interaction and hydrophobic interaction between acid molecules

and calcite surfaces are important in the adsorption process. The adsorption free

energy can be enhanced by increasing the tail size of naphthenic acids. Further, the

adsorption of acids at room temperature was shown to be entropically driven and

increases with the increase of temperature, which is consistent with experimental

observation.
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7.2 Future work

7.2.1 More Realistic Model for Surfactant

Surfactant molecules are constructed in a relatively primitive manner in this work:

the same spirit as the Telo de Gama and Gubbins model[66] that the surfactants con-

sist of water-like segments and oil-like segments was incorporated. Although some

improvement has been made to the original model including explicitly considering

hydrogen bonding interactions, only qualitative agreement between theoretical pre-

diction and experimental observations has been achieved. However, a quantitative

prediction is in no doubt more preferred. So more realistic parameters and model

for surfactant molecules should be considered as part of the future work. A number

of development has been made in our group and is worth considering for reference.

For example, Marshall et al.[141] showed that the rigidity of surfactant tails can be

incorporated in iSAFT by considering Wertheim’s second order perturbation theory.

Further, Deepti et al.[216, 140] showed that by proper fitting, iSAFT can quanti-

tatively predict the interfacial tension isotherms of amphiphilic molecules such as

alcohols and block copolymers. By developing and incorporating realistic surfactant

parameters and model, iSAFT has the potential to quantitatively predict the inter-

facial properties of surfactants and help improve the e�ciency of rational design of

surfactant structure for specific applications.

7.2.2 Micelles as Drug Delivery Carriers

Owing to the similarity to natural carriers such as viruses and serum lipoproteins,

the use of self-assembled block copolymer micelles in the field of drug delivery is

of increasing interest to researchers and pharmaceutical industry[217]. Due to the
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amphiphilic nature of block copolymers such as Pluronics, block copolymers built of

poly(ethylene oxide)(PEO) and poly(propylene oxide)(PPO), etc, hydrophobic seg-

ments are expelled by the aqueous environment to form a hydrophobic core which can

substantially solubilize hydrophobic drug molecules[218]. This reservoir of drug is sur-

rounded and protected by the hydrophilic moieties. The applicability of block copoly-

mers as drug carriers is a↵ected by a number of properties including but not limited

to water solubility of the drug-micelle complex in aqueous environment, biocompati-

bility or size of the micelles, micellar stability including thermodynamic stability and

kinetic stability, biological half-life, morphology, drug loading or drug solubility, and

release characteristics[217]. In Chapter 4, we showed that iSAFT is ready to describe

a number of properties of surfactant micelles. Additionally, Kai et al.[136] showed

that iSAFT is able to capture the thermoresponsive behavior of polymer brushes,

which unveils the potential application of iSAFT for the design of thermo sensitive

block copolymer carriers for active targeting and precise drug delivery[219].

In the future, iSAFT will be extended to study the properties of drug-micelle

complexes or swollen micelles. A number of developments can be useful in improving

the current iSAFT model describing micelle formation. First, iSAFT model needs to

be extended to describe the micelle size distribution, which may need the calculation

to be performed in higher dimension. Then, physical model parameters of the block

copolymers and drug molecules need to be developed. Finally, the theory needs

to be extended to model other micelle shapes such as the ellipsoid, rod-like and

lamellar shape[220, 221]. After these developments, iSAFT can be used to improve

the e�ciency in designing polymer architecture for better and more e�cient drug

delivery carriers.
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7.2.3 Wettability Alteration

As introduced before, the development of advanced techniques for the wettability

alteration of carbonate reservoirs can greatly improve oil recovery e�ciency in water-

flooding processes. The wettability of rock surfaces is a function of the amount of

adsorbents and properties of adsorbed organic acids. So understanding the interaction

between the organic acids and the rock surface may enable better understanding of the

mechanism behind wettability alteration and developing new approaches to achieve

the wettability alteration. In Chapter 6, we showed the study on the adsorption

of deprotonated naphthenic acids on the most stable calcite surfaces at low acid

concentration and the results agree with experimental observation. The investigation

on the interactions between acids and calcite surfaces at other conditions such as

higher acid concentration has left to be carried out. Furthermore, a mechanism has

been proposed by Zhang et al.[196] explaining the e↵ect of potential determining ions

(Ca2+, Mg2+ and SO2�
4

) on the wettability alteration of chalk. It was proposed that

the adsorbed acid molecules can react with Ca2+ at low temperature. In contrast, at

higher temperature, Mg2+ could substitute Ca2+ from the surface of the mineral and

replace the Ca2+-acid complex. However, a verification of this proposed mechanism

is still unavailable in the literature. So, in the future, this mechanism will be tested

in molecular level using molecular dynamics simulation and quantum mechanics.

After thorough investigations of the interactions between acids and mineral sur-

faces at various conditions such as temperature, salinity, brine composition, and etc,

an approach or brine formulation will be developed to e↵ectively desorb the acid

molecules from the rock surfaces and alter the wettability for improved oil recovery

e�ciency.
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7.2.4 Solving iSAFT in Higher Dimension

In current stage, the iSAFT classical density functional theory can only be e�ciently

carried out in one-dimension by assuming symmetry in the other two dimensions

or in two-dimension when the Fast Fourier Transform approach is incorporated[222].

Although a large range of problems can be resolved by these lower dimensional iSAFT

approaches, a higher dimensional iSAFT model is still preferred when more complex

systems are investigated. For example, the bicontinuous structure of a middle-phase

microemulsion can only be described in 3-D and cannot be e�ciently solved by current

iSAFT model.

Since the free energy of the system is directly available from iSAFT, a numerical

scheme that utilizes Monte Carlo sampling is promising and enables straightforward

higher dimensional calculations. Additionally, the mean field approximation which

ignores the pair correlation between particles can be dropped naturally in a Monte

Carlo based approach. This approach has been applied by Detcheverry et al[223] to

study the phase behavior of polymeric systems with free energy functional from self

consistent field type theory. After incorporating this approach into iSAFT framework,

the model will be capable of exploring the complex phase behavior of surfactant

systems and providing insight into the structure of middle-phase microemulsions.
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Appendix A

Numerical Integrals in 1-D Spherical Coordinate

A.1 Introduction

Due to the limitation of computational resources, the integrals in iSAFT are too ex-

pensive to handle directly. By taking advantage of the symmetry of the systems being

studied, the integrals can be simplified to 1-D form, which makes iSAFT more com-

putationally e�cient and easy to implement. Here in this appendix we demonstrate

the numerical procedure we took to simplify the integrals in 1-D spherical coordinate

and the final forms of some of the most important integrals in iSAFT are provided

for reference.

A.2 1-D Numerical Integrals

A.2.1 Ideal Gas Contribution

The ideal gas contribution and its functional derivative are quite straightforward since

the functional derivative does not include a convolution. The explicit form is:

�Aid[⇢(�!r )] =
Z

d�!r
2

mX

↵=1

⇢↵(
�!r

2

)[ln ⇢↵(
�!r

2

)� 1] (A.1)

This is the ideal gas contribution to the free energy functional. The functional

derivative is:

��Aid

�⇢↵(
�!r
1

)
= ln ⇢↵(r1) (A.2)
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A.2.2 Hard Sphere Contribution

The hard sphere contribution can be approximated very accurately in a weighted

density formalism. There have been several modified versions of weighted density

approximation e.g. Rosenfeld’s Fundamental Measure Theory(FMT), Wu’s modified

FMT and White-Bear version FMT. In this thesis, we adopt the Rosenfeld’s FMT.

As introduced before, the FMT contribution to free energy is give as:

�Ahs[⇢(�!r )] =
Z

d�!r
1

�[ni(
�!r
1

)] (A.3)

where ni(
�!r
1

) are weighted densities, namely n
0

, n
1

, n
2

, n
3

, �!n V 1

, and �!n V 2

:
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Here !(i)
↵ are six weighting functions representing the contribution to free energy

functional from mass, surface area and volume. They are given by:
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)] is given by:
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We start with the averaged fundamental geometrical measures ni of the particles.

Since n
0

, n
1

and �!n V 1

are trivial once we know n
2

, n
3

, and �!n V 2

, we here only do the

1-D integration of n
2

, n
3

and �!n V 2

.
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Figure A.1 : Coordinate transformation from rectanlinear to spherical coordinate.

We first define �!r
12

= �!r
2

��!r
1

(Fig. A.1). Then we substitute �!r
2

with �!r
1

+�!r
12

and

ni becomes:

ni(
�!r
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X
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Z
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Since it is a linear transformation, the Jacobian from substitution is 1. The boundary

of integration will not be changed either since the it integrates from negative infinity

to positive infinity.

Now we change the rectilinear variable �!r
12

to curvilinear variables as we do in

spherical coordinate. The axis of spherical coordinate and notation for variables are

given in Fig A.1. Here we have to add the Jacobian which is a scalar r̂ sin ✓, where r̂

is the magnitude of �!r
12

. Then the transformed fundamental geometric measures are:
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�!r
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since r̂ and r
2

are directly related by:
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(A.10)
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2
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Let’s first take a look at n
2

. Since the system is spherically symmetrical, n
2
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). We also use the property of delta function
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We can further simplified this equation by using Eq. A.13 and Eq. A.14 given by:

r0 =
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1

R↵ cos ✓ (A.13)
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Plugging the above two equations into n
2

and assign proper upper bound and

lower bound for the integral, we arrive at:
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Similarly we can compute n
3

where a Heaviside function instead of a delta function

is involved as:
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Again, we use Eq.A.13 and Eq.A.14 and rearrange n
3

. It becomes:
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After changing the order of integration, the third geometric measure n
3

for spherically

symmetrical system is:
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The other scalar geometric measures n
0

and n
1

can be obtained by:
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The vector geometric measures �!n V 2

and �!n V 1

are somewhat more complicated.
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Recognizing that the system is spherically symmetrical, only the vector in �!er is non-

zero. The above equation becomes:
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Plugging in Eq. A.13 and Eq. A.14, we arrive at:
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The other vectorial geometric measure �!n V 1

is available through:
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Now we have all the weighted densities in 1-D spherical form and they are summarized

here:
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To compute the functional derivative of FMT terms, we first apply chain rule in

functional di↵erentiation:
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We can see that the forms of the integrals are very similar to the weighted densi-

ties(Eq. A.9). Following the same numerical procedure described above, the func-

tional derivative of FMT can be computed:
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A.2.3 Long Range Attraction

Functional derivative due to long range attraction is approximated by mean field

method and it is given below.
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The 1-D integral can be written as:

��Aatt

�⇢↵(r1)
=

8
>>>>>>><

>>>>>>>:

P
�

2⇡
r1

R
+1
�
↵�

�r1
dr0r0⇢�(r0)

R r0+r1
max(|r0�r1|,�

↵�

)

dr̂�uatt
↵�(r̂)r̂, r1 < �↵�

P
�

2⇡
r1

R
2r1
0

dr0r0⇢�(r0)
R r1
max(|r0�r1|,�

↵�

)

dr̂�uatt
↵�(r̂)r̂

+
P
�

2⇡
r1

R
+1
0

dr0r0⇢�(r0)
R r0+r1
max(|r0�r1|,r1) dr̂�u

att
↵�(r̂)r̂, r1 � �↵�

(A.34)

Realizing that uatt
↵� is known, the second integral can be handled analytically.
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A.2.4 Association Contribution

Association contribution to the over all Helmholtz free energy functional is given

below.
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Its functional derivative can be derived as:
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Applying the chain rule for the functional derivative � ln y��
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Plugging this equation back to the original equation of the functional derivative

gives:

��Aassoc

�⇢↵(
�!r
1

)
=

X

A2�(↵)

lnX↵
A(
�!r
1

)� 1

2

NX

�=1

{�0}X

�0

Z
d�!r

2

⇢�(
�!r
2

)
X

A2�(�)

(1�X�
A(
�!r
2

))[
@ ln y��

0
(⇢̄(�!r

2

))

@⇢̄↵(
�!r
2

)
]

⇥ 3

4⇡�3

⇥(� � |�!r
1

��!r
2

|)

=
X

A2�(↵)

lnX↵
A(r1) +

1

2

3

4⇡�3

NX

�=1

{�0}X

�0

⇡

r
1

Z r1+�

|r1��|
(�2 � (r

1

� r0)2)⇢�(r
0)

⇥
X

A2�(�)

(1�X�
A(r

0))[
@ ln y��

0
(⇢̄(r0))

@⇢̄↵(r0)
]r0dr0

+
1

2

3

4⇡�3

NX

�=1

{�0}X

�0

⇥(� � r
1

)4⇡

Z ��r1

0

⇢�(r
0)

X

A2�(�)

(1�X�
A(r

0))[
@ ln y��

0
(⇢̄(r0))

@⇢̄↵(r0)
]r02dr0

(A.38)



154

A.2.5 Chain Formation Contribution

Chain contribution is based on association contribution so they carry similar forms.

The 1-D integral is given:
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Monomer fraction lnXA at the limit of complete association can be seen in the

theory section. Its 1-D integration is similar to the derivation shown previously.
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Appendix B

Simulation Box Snapshots and Pair Correlation
Functions

B.1 Snapshots of the simulation box
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(a) 0% LB, system 1 (b) 10% LB, system 2(c) 30% LB, system 3(d) 50% LB, system 4

(e) 70% LB, system 5(f) 90% LB, system 6(g) 100% LB, system

7

Figure B.1 : Snapshots of the systems listed in Table 1 at the end of production.
Color scheme: LB in green, AOS in white, octane in gray, water in blue, and NA in
yellow. Black represents vacuum. The aspect ratios of the simulation boxes printed
here are kept the same as the original simulation cells while the real dimensions are
not produced.
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B.2 Pair Correlation Functions
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(a) 10% LB, system 2
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(b) 30% LB, system 3
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(c) 50% LB, system 4
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(d) 70% LB, system 5
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(e) 90% LB, system 6

Figure B.2 : 3-D Pair correlation functions between C in carboxylic group of LB
and sodium(solid blue) and S in sulfonate group of AOS and sodium(dash green),
respectively. The range of y axises are kept the same for comparison.


